
Video Steganography

COM3600 Research Project

This report is submitted in partial fulfillment of the requirement for the
degree of Master of Software Engineering in Computer Science by James

Ridgway

Author:
James Ridgway

Supervisor:
Dr. Mike Stannett

30th April 2013

Signed Declaration

All sentences or passages quoted in this report from other people’s work have been specific-
ally acknowledged by clear cross-referencing to author, work and page(s). Any illustrations
which are not the work of the author of this report have been used (where possible) with
the explicit permission of the originator and are specifically acknowledged. I understand
that failure to do this amounts to plagiarism and will be considered grounds for failure in
this project and the degree examination as a whole.

Name: James Ridgway

Signature:

Date: 30th April 2013

i

Abstract

The field of digital steganography centres on hiding information in digital file formats.
Whilst the application of steganographic techniques in relation to image and audio files
has been extensively researched, research into the use of other container files remains
limited.

The aim of this project is to explore different methods for securely encoding messages in
a multimedia container, utilising both the audio and video stream, and using steganalysis
to determine their effectiveness.

ii

Acknowledgements

I would like to thank my supervisor, Mike Stannett, for allowing me to undertake this
project, and for his unwavering support and guidance throughout. I would also like to
thank:

• Michael Niedermayer for helping me navigate and familiarise myself with the vast
FFmpeg codebase.

• My parents for their support in everything I do.

• My brother, Paul, for providing advice and being an unrivalled source of inspiration.

iii

Preface

From the outset I have documented a large proportion of my work and progress online via
http://www.steganosaur.us, therefore some of the material outlined in this document
may already have been published online.

During the early stages of this project I thoroughly researched the fundamentals of
steganography, in addition to this I investigated some methods for video manipulation.
My findings and the resulting products are documented in Appendix A. The research
documented in Appendix A bears relevance to the main body of this document and is
cross referenced accordingly.

In addition to documenting the progress of this project, I have developed several online
tools as part of the preliminary research into fundamental steganographic techniques.
Some information relating to neighbouring fields, such as cryptography, can also be found
on the website.

Towards the end of this project I was asked to provide a special guest lecture for the
Department of Computer Science. My lecture started with the history of steganography
and covered video coding, audio, image and video steganography techniques, including
specifics of this project. This lecture was pitched at:

• COM1004 Web and Internet Technology (Level 1) students.

• COM3501/4501/6501 Computer Security and Forensics (Level 3/Level 4/MSc) stu-
dents.

• Departmental academics and researchers.

More details about the lecture can be found at: http://www.steganosaur.us/lecture

Conventions Used in This Document

The following typographical conventions are used in this document:

Italic
Indicates a new term.

Constant Width
Denote URLs and programming code (code snippets, class names, function
names, etc.)

iv

http://www.steganosaur.us
http://www.steganosaur.us/lecture

Contents

Signed Declaration i

Abstract ii

Acknowledgements iii

Preface iv

Contents v

List of Figures viii

List of Tables ix

Glossary x

1 Introduction 1
1.1 Project Aims . 1
1.2 The History of Steganography . 1

1.2.1 First Evidence of Steganography . 1
1.2.2 Linguistic Steganography . 2

1.3 Modern Steganography . 2
1.3.1 Prisoners’ Problem . 3
1.3.2 Steganography, Security and Cryptography 3
1.3.3 Watermarking . 3

1.4 Steganalysis . 3
1.4.1 Passive Warden . 4
1.4.2 Active Warden . 4
1.4.3 Malicious Warden . 4

1.5 Video Steganography . 4
1.6 Structure of this Report . 4

2 Literature Survey 5
2.1 Fundamentals and Background . 5

2.1.1 Injection Techniques . 5
2.1.2 Substitution Techniques . 5
2.1.3 Generation Techniques . 7
2.1.4 Transform Domain Techniques . 7

2.2 Video Steganography . 8
2.2.1 Transform-Domain . 9
2.2.2 Streaming and Real Time . 10

v

2.3 Video Coding . 11
2.3.1 Compression . 11
2.3.2 Quantisation . 12
2.3.3 Coding Concepts . 13

2.4 Steganalysis . 14
2.4.1 Overview of Steganalysis Techniques 15
2.4.2 Video Steganalysis . 16

2.5 Cryptography . 17
2.5.1 Substitution Ciphers . 17
2.5.2 Symmetric Algorithms . 18
2.5.3 Asymmetric Algorithms . 19

2.6 Summary . 20

3 Requirements and Analysis 21
3.1 Project Overview . 21
3.2 Requirements . 21

3.2.1 Functional Requirements . 21
3.2.2 Non-Functional Requirements . 23

3.3 Analysis . 23
3.3.1 Application . 23
3.3.2 Steganography . 24
3.3.3 Steganalysis . 25

3.4 Testing Strategy . 25
3.5 Evaluation Strategy . 25
3.6 Chapter Summary . 26

4 Design and Implementation 26
4.1 Design Decisions . 27

4.1.1 Libraries . 27
4.1.2 Codecs . 27

4.2 System Design . 28
4.2.1 Overview . 28
4.2.2 Command Line Tool . 28
4.2.3 Graphical User Interface . 37

4.3 Implementation . 42
4.3.1 Overview . 42
4.3.2 Command Line Tool . 42
4.3.3 Graphical User Interface . 46
4.3.4 Cross Platform Compatibilities . 47

4.4 Chapter Summary . 48

5 Testing 49
5.1 Unit Testing . 49
5.2 System Testing . 50
5.3 Video Testing . 52
5.4 User Acceptance Testing . 53
5.5 Chapter Summary . 53

vi

6 Evaluation 54
6.1 Deliverables and Implementation . 54
6.2 Results and Findings . 55
6.3 Further Work . 57
6.4 Chapter Summary . 59

7 Conclusion 59

Bibliography 61

A Preliminary Research 67
A.1 Steganosaurus . 67
A.2 Preliminary Research . 68

A.2.1 Audio Steganography . 68
A.3 Early Steganography System . 69

A.3.1 Image Steganography and Steganalysis 70
A.3.2 Early Video Manipulation . 71
A.3.3 Deviation from Java . 72

B Advanced Encryption Standard 73
B.1 The Advanced Encryption Standard . 73

B.1.1 AES and Rijndael . 73
B.1.2 Algorithm Overview . 73

B.2 Algorithm Processes . 74
B.2.1 Key Expansion . 74
B.2.2 SubBytes Step . 75
B.2.3 ShiftRows Step . 76
B.2.4 MixColumns Step . 76
B.2.5 AddRoundKey Step . 76

B.3 Block Cipher Modes . 76
B.3.1 Electronic Code Book (ECB) . 77
B.3.2 Cipher Block Chaining (CBC) . 78
B.3.3 Cipher Feed Back mode (CFB) . 79
B.3.4 Output Feed Back mode (OFB) . 80

vii

List of Figures

2.1 This figure shows LSB encoding of the word “Hello” inside container data. 6
2.2 ASCII distribution from LSB string before data is embedded in a PNG image. 16
2.3 ASCII distribution from LSB string after data is embedded in a PNG image. 16
2.4 Comparison of ASCII distributions from LSB strings of image data 16
2.5 Caesar cipher example . 17

4.1 Transcode process flow chart . 32
4.2 Transcode process: decodePacket flow chart 33
4.3 Encoder architecture overview . 34
4.4 Decoder architecture overview . 35
4.5 AES cryptosystem overview . 36
4.6 GUI – Main Interface (Encode) . 38
4.7 GUI – Main Interface (Decode) . 38
4.8 GUI – Main Interface – Menu Structure . 39
4.9 GUI – Cryptography Test Vectors Dialog 39
4.10 GUI – Unit Test Dialog . 40
4.11 GUI – Transcode Dialog . 40
4.12 GUI – Execute Dialog . 40
4.13 GUI – Meta Data Dialog . 40
4.14 GUI – About Dialog . 40
4.15 GUI – Progress Dialog . 40
4.16 GUI – Video Player Dialog . 41
4.17 GUI – Visual Comparison Dialog . 41
4.18 GUI – Motion Vector Comparison . 41

5.1 CUnit summary – unit testing results . 50

6.1 Input Video – frame 600 . 56
6.2 Inverted motion vectors – frame 600 . 56
6.3 With “First Macroblock X” technique applied – frame 600 56
6.4 With “First Macroblock Y” technique applied – frame 600 56
6.5 Motion vector comparison of original and “First Macroblock Y” video –

frame 600 . 57
6.6 Embedding in every macroblock of every frame. Frame 606 (precedes I-frame). 58
6.7 Embedding in every macroblock of every frame. Frame 606 (I-frame). . . . 58
6.8 Embedding in every macroblock of every frame. Frame 607 (post I-frame). . 58

A.1 Steganosaur.us - Homepage . 67
A.2 Steganosaur.us – Website Sections . 68
A.3 Main interface . 69

viii

A.4 Audio Steganography Tool. 70
A.5 Image Steganography Tool. 70
A.6 ASCII distribution comparison . 70
A.7 Steganosaurus Graphic . 71
A.8 ASCII distribution of LSB string after encrypted data is embedded in a PNG image. 71
A.9 Video frame manipulation using Xuggler . 72

B.1 Electronic Code Book (ECB) - Encryption . 77
B.2 Electronic Code Book (ECB) - Decryption . 78
B.3 Cipher Block Chaining (CBC) - Encryption . 78
B.4 Cipher Block Chaining (CBC) - Decryption . 79
B.5 Cipher Feed Back (CFB) - Encryption . 79
B.6 Cipher Feed Back (CFB) - Decryption . 80
B.7 Output Feed Back (OFB) - Encryption . 80
B.8 Output Feed Back (OFB) - Decryption . 81

List of Tables

5.1 System test grid – command line tool . 51
5.2 System test grid – GUI . 52

A.1 WAV File Format . 69

ix

Glossary

Active warden A warden that attempts to prevent the use of
steganography by altering the message whilst
preserving the meaning.

Alice The name of a fictitious person in the Prison-
ers’ Problem.

Audio stream The audio component/track of a video file.

B-Frame A bi-directional frame whose representation is
predicted by its two neighbouring frames.

Blind steganalysis Steganalysis where the attacker has no know-
ledge of the stegosystem.

Bob The name of a fictitious person in the Prison-
ers’ Problem.

Ciphertext The output of bits produced by a crypto-
graphic algorithm.

Container In steganography a container is the object in
which a message is hidden.

Cryptography The practice and study of secure communic-
ation.

Cryptosystem A system of algorithms that is capable of per-
forming encryption and decryption tasks.

Forensic steganalysis Forensic steganalysis is a level of steganalysis
that attempts to determine the nature (mes-
sage contents, length etc.) of a message hid-
den in a container.

Frame A raw (decoded) portion of data that contains
either audio samples or an image.

Generation A steganographic technique that generates
the container file based on the information to
be encoded.

I-Frame Shorthand for an Intra Frame.
Injection A steganographic technique that inserts addi-

tional information into a container file.
Intra Frame A reference frame of a video that is independ-

ent from any other frames.

x

Kerckhoff’s principle The principle that a cryptosystem should re-
main secure if everything except the key is
known.

Linguistic steganography A form of steganography where the covert
message is contained in text.

Malicious warden A warden that attempts to capture the
communication of parties by impersonation
and/or extensive modification of messages.

P-Frame A predicted frame whose representation is
predicted from preceding frames.

Packet A packet is a compressed and formatted unit
of data.

Passive warden A warden that passively observes communic-
ation.

Picture stream The image component of a video file.
Plaintext Message to be encrypted by a cryptographic

algorithm.
Prisoners’ Problem A fictitious scenario used to illustrate the dif-

ficulties of steganography and steganalysis.

Spatial domain The spatial domain refers to the normal space
of a multidimensional signal. In the context
of an image, this is the 2D pixel space.

Spatiotemporal domain Spatial domain signals existing in the tem-
poral domain.

Statistical steganalysis The process of performing steganalysis by
representing the container as a set of numer-
ical functions.

Steganalysis The art and science of detecting messages that
have been hidden using steganography.

Steganographic capacity The amount of information that can be hid-
den in a container file.

Steganography The art and science of covert communication.
Stegosystem A covert system for communicating that com-

prises a container file, steganographic key and
message. The stegosystem also encompasses
the physical exchange of messages.

Substitution A steganographic technique whereby inform-
ation in the container file is replaced by the
message contents.

xi

xii

Targeted steganalysis A type of steganalysis attack that utilises
information about the steganographic al-
gorithm or stegosystem.

Temporal cohesion The correlation between signals observed at
different moments in time.

Transform domain A mathematical procedure for converting
data from one domain to another.

Warden A person or computer program that monitors
the communication between parties (such as
Alice and Bob in the Prisoners’ Problem).

Watermarking The technique of embedding supplementary
data in a container file.

Wendy The name of the fictitious warden in the Pris-
oners’ Problem.

Chapter 1: Introduction

Steganography is an unusual aspect of security that is not commonly known, despite having
a history that dates back thousands of years [Col03]. The roots of steganography date
back as far as the Ancient Greeks, who provide us with the first description of a technique,
which 1500 years later, was labeled “Steganography”. The term is derived from two Greek
words: stegano and graphia, meaning “covered” and “writing” respectively [Fri10,Col03].
Put simply, steganography is the practice of concealed communication where the presence
of a message is secret.

Despite the Greek origin, the word “Steganography” does not appear in the literature
until the 17th Century, when Johannes Trithemius uses the word in a trilogy published
in Frankfurt in 1606. The first two volumes, Polygraphia and Steganographia specifically
discuss cryptography and steganography [Fri10,Col03].

1.1 Project Aims

The aim of our project was to produce a cross-platform video steganography tool that is
capable of hiding data securely in a video container . Video manipulation is a broad and
complex topic, therefore we limited our research to a single video format (H.264/AAC
– a commonly used format for recording high-definition video). Verifying the security
of any system or solution is not a simple process done over a couple of weeks or months.
Whilst some understanding of the security of the system can be achieved in this time frame,
many security experts believe a system is only secure if it has not been broken after several
years [Col03]. Our final software solution combines steganography and cryptography to
guarantee a minimum level of security.

1.2 The History of Steganography

1.2.1 First Evidence of Steganography

Whilst the term “Steganography” is only a few hundred years old, the concept of hiding
and concealing messages has existed for thousands of years.

The earliest known written account of steganography being used is told by Herodotus
(484-425 BC) [Her96], who tells how his master, Histiaeus, sent a slave to the Ionian city
of Miletus with a message concealed on his body. The slave’s head was shaved and the
message was tattooed on his scalp. Once his hair had grown back concealing the message
he was sent on his way to the city’s regent, Aristagoras. Upon his arrival, the slave’s head
was shaved revealing a message persuading Aristagoras to revolt against the Persian king.

Herodotus also documents how Demeratus used a wax tablet to send a concealed
message to Sparta, warning of the planned invasion of Greece by the Persian Great King,
Xerxes. Demeratus removed the wax from the tablet and inscribed his message on the

1

CHAPTER 1. INTRODUCTION 2

wood beneath before applying a fresh coat of wax. The tablet could then be carried and
used normally. The hidden message was only revealed by scraping away all of the wax.
Aeneas the Tactician, another Greek writer well-known for his various steganographic
approaches and techniques, also proposed methods for concealing information in women’s
earrings, or using pigeons to deliver secret messages [Whi90].

1.2.2 Linguistic Steganography

Linguistic steganography is possibly one of the oldest forms of steganography. Aeneas
the Tactician, again, described many linguistic techniques, which are now considered fun-
damentals of linguistic steganography. For instance, he describes altering the height of
letters or marking particular letters with dots or small holes. Linguistic steganography
has been used prolifically throughout history, and modern day variants of these techniques
still exist today. Giovanni Boccaccio, a 14th Century poet, encoded over 1500 letters taken
from three sonnets, into his acrostic poem, Amorosa Visione [Fri10]. This is possibly one
of the largest examples of linguistic steganography.

Possibly the most interesting linguistic technique was proposed by Francis Bacon.
Bacon’s method allows messages to be encoded using a binary representation, by using
normal or italic font [Bac40]. The scheme proposed by Bacon is a precursor to modern
steganographic techniques.

In 1857, Brewster proposed a photographic technique that would allow text to be
shrunk down to a dirt-sized speck. Only under very high levels of magnification would
it be possible to read the message. In World War I, the Germans used this technique to
conceal large messages in the corner of post cards. The “microdot” technique used by the
Germans was capable of hiding entire pages of text and even photographs, making them
a powerful container of covert information [Fri10,JDJ03].

During World War II the following message was sent by a German spy [Kah67]:

Apparently neutral’s protest is thoroughly discounted and ignored. Isman hard
hit. Blockade issue affects pretext for embargo on by-products, ejecting suets
and vegetable oils.

By taking the second letter of each word the following message is revealed:

Pershing sails from NY June 1

This type of linguistic steganography is sometimes called a null cipher [Rab04].

1.3 Modern Steganography

With the advent of computers and modern technology steganography is becoming more
and more widespread. Image, audio and video files present interesting digital file formats
for concealing information. The invention of the internet has provided a greater means
of sharing information, and as such, it has become commonplace to share digital media.
Media files are generally large in size, which has facilitated the hiding of large quantities
of data.

CHAPTER 1. INTRODUCTION 3

1.3.1 Prisoners’ Problem

Undetectability is an imperative component of steganography. Simmons famously illus-
trates this crucial fundamental through his description of the principle of the Prisoners’
Problem [Sim83].

Two individuals (Alice and Bob) are imprisoned. Alice and Bob can communicate with
each other, but all of their communication is constantly monitored by a warden (Wendy).
Alice and Bob want to hatch an escape plan, to do this they will use steganography to
communicate covertly. It is crucial that their communication is undetectable, since the
mere presence of a secret message will alert Wendy.

1.3.2 Steganography, Security and Cryptography

Cryptography and steganography are often regarded as similar practices, and whilst both
fields deal with secure communication, the differences between these two fields are plentiful.

For cryptography to be secure, a communication must be unintelligible – cryptography
is only broken once the original message is understood. Thus, an encrypted message is
secure if it cannot be read.

Steganography, on the other hand, is only secure if the existence of the message is
not known. Once the presence of a covert message is detected steganography has failed
because something that was intended to be covert, has become overt.

Whilst these fields differ in their definitions of “secure”, there are areas which are
common to both domains. Kerckhoff’s principle, which is native to cryptosystems, but
is also applicable to steganography, states that a cryptosystem should remain secure
even if everything relating to it is public knowledge – security should reside in the key
[Kah67,Sch96]. This applies to steganography (and the Prisoners’ Problem) – even if the
steganographic algorithm is public knowledge, the existence of a message should remain
unknown without the correct steganographic key.

1.3.3 Watermarking

Watermarking is a technique for hiding supplementary information in a file [Fri10]. This
technique is similar to steganography, however there are some key differences. With steg-
anography the data embedded should be covert and undetectable; in contrast it does not
matter if watermarked information is easy to detect, the important factor is that it should
be difficult to remove. Removing a watermark should result in significant degradation of
the quality of the container file [Col03]. Watermarking is commonly used to help trace
the origin of files. MP3 files purchased over the internet are regularly encoded with the
details of the buyer and seller. The traceability and public knowledge of watermarking
acts as a strong deterrent against online piracy. Watermarking is successful because of the
difficulties involved in separating embedded content from its container [Fri10].

1.4 Steganalysis

Steganalysis is the practice of detecting the presence of messages that have been hidden
using steganography. Ideally, steganalysis will also determine the contents of the message.
In the Prisoners’ Problem, steganalysis is the job of the warden. Wardens can be associated
with a variety of categories such as: active, passive and malicious.

1.4.1 Passive Warden

A passive warden inspects data, attempting to determine by observation alone, whether
or not a message is present. Passive wardens will often use statistical analysis in an effort
to ascertain the presence of a message [Fri10].

1.4.2 Active Warden

An active warden will not only attempt to determine the presence of a message, but also
prevent the exchange of covert messages.

In the case of linguistic steganography, an active warden will rephrase passages and
exploit synonyms in intercepted communiques. During World War II the U.S Post Office
censored the contents of telegrams to ensure that hidden messages were not exchanged.
In one instance, a censor changed “father is dead” to “father is deceased”, resulting in the
reply “is father dead or deceased?” [HLvR+00].

An active warden will only perform slight modification of any intercepted messages.

1.4.3 Malicious Warden

A malicious warden will attempt to catch the prisoners’ communicating, often by modi-
fying large portions of the container or even fabricate entire messages by impersonating
one of the prisoners [Cra96,BDBG08].

1.5 Video Steganography

Digital steganography techniques often use image and audio files as carriers for their hid-
den information. Between 1992 and 2007, images were by far the most popular type of
steganographic container with 52% of steganography software supporting image contain-
ers. Although audio files are the second most commonly supported format, only 15% of
steganography software uses audio files. The use of video files as steganographic containers
is still a developing area of the field, with only 3% of steganography software supporting
these files [DHC10].

1.6 Structure of this Report

The remainder of this report is divided into six chapters. In Section 2 we review the
existing literature starting with an overview of the fundamental principles and techniques,
before discussing steganography and steganalysis in detail. In Section 3 we analyse the
requirements and goals of this project, and identify how the success of the project will
be evaluated. Section 4 documents the designs and implementation of our system, and
the agile design process used to develop our solution. Section 5 details the testing that
has been carried out on our solution. In Section 6 we present the results of our work, the
objectives that we have achieved and discuss further research that could be carried out
within the field of video steganography. Finally, in Section 7, we summarise our findings

4

CHAPTER 2. LITERATURE SURVEY 5

and the points discussed in this report.

Chapter 2: Literature Survey

There are numerous techniques for hiding data in a digital container file. Although this
project focuses solely on using a video container file, there are techniques in audio and
image steganography that still bear relevance to video file formats. Furthermore, video
can be split into two components: the audio stream and the picture stream. To be able
to work with video steganography, it is important that we understand the audio and
image (picture) techniques that have already been developed and explored within digital
steganography.

2.1 Fundamentals and Background

There are a variety of steganographic techniques that can be used to conceal information
in a container file. The steganographic techniques discussed herein fall into one of the fol-
lowing categories which are defined by the method of data hiding: injection, substitution,
generation and transform domain.

2.1.1 Injection Techniques

Steganography performed by injection is by far the simplest steganographic technique. As
the name suggests, data is injected into redundant areas of the container file. Most files
have an End of File (EOF) marker or a file size marker, which indicates where the reading
of a file should cease. Data can be placed at the end of the file (after the EOF marker),
without affecting the integrity of the container file [Col03]. This technique is very simple
and as such, is very easy to detect.

This technique works well on files such as EXEs and WAV. EXE files have an end of
file marker, after which you can place any quantity of data [Col03]. WAV files have a data
length defined in their header (see A.2.1), therefore, any data can be injected after the
WAV-data section (at the end of the file).

The nature of injection techniques means that it is a fairly straightforward process to
detect and extract the covert data. Techniques that embed the data into the container
(via generation or substitution) are generally harder to detect because the covert data is
interwoven with the original container data, thus making it harder to identify the presence
of covert data.

2.1.2 Substitution Techniques

A substitution technique will identify areas of a file of least relevance, and replace this
data with the covert data [Col03]. This technique does not modify the size of the container
file, and is consequently limited by the steganographic capacity of the file.

CHAPTER 2. LITERATURE SURVEY 6

H e l l o

01001000 01100101 01101100 01101100 01101111

S t e g a n...

01010011 01110100 01100101 01100111 01100001 011...

01010010 01110101 01100100 01100110 01100001 011...

Covert Data:

Container Data:

Embedded Data:

Figure 2.1: This figure shows LSB encoding of the word “Hello” inside container data.

LSB Manipulation

One of the most common steganographic techniques is Least significant bit (LSB) manipu-
lation [JDJ03]. LSB manipulation can be easily applied to some audio and image formats,
and works by modifying part of the representation of the data stored within the container
format. In the context of audio it is possible to modify the LSB of each sample without
causing any audible difference to the sound during playback [Col03]. With palette-based
image files LSB manipulation works in a similar vein as audio files, but instead of modify-
ing the LSB of a sample, it is the LSB of the three-byte RGB colour representation that
is modified. In either case, the fluctuation in colour or sound that is introduced by LSB
is not noticeable to a human.

Before explaining how different compression levels affect the use of LSB manipulation
the spatial and transform domains must be defined. The spatial domain in the current
context is best defined as the normal image space in which pixels can be represented as
a two-dimensional matrix. Representing an image in the spatial domain allows for the
image to be changed in space by the direct manipulation of pixels. On the other hand,
the transform (or frequency) domain exploits the fact that any signal can be represented
as a sum of sine waves. In the transform domain an image is represented by the different
frequencies that comprise it, and their respective intensities.

With uncompressed and lossless compression formats the exact representation of data
is preserved which makes LSB manipulation straightforward [Fri10]. In contrast, lossy
compression generally discards insignificant portions of data, such as LSBs, which makes
LSB manipulation redundant when working with data that is compressed using lossy com-
pression. Generally compressed data cannot be modified as this corrupts the compressions
and has an adverse impact on the data that has been compressed; this rules out applying
LSB manipulation to compressed data.

WAV audio files are uncompressed which allows for direct modification of the raw data
stored in the files (so long as the file header is preserved). Palette-based images (PNGs
and GIFs) are examples of lossless compressed formats. Once the data in these files has
been decoded, LSB manipulation can be applied to any of the pixel values. JPEG and
MP3 are two examples of lossy compression file formats. JPEG images are represented in
the transform domain (see Section 2.1.4) and the majority of this information is encoded
using lossy compression. Small portions of the file (DCT coefficients) are encoded using
lossless compression. Generally any data that is losslessly encoded can be manipulated
using LSB encoding [Fri10].

CHAPTER 2. LITERATURE SURVEY 7

2.1.3 Generation Techniques 1

Generation techniques involve generating a container file based on the covert data that
is to be embedded. Most generation techniques create fractal images, which have specific
mathematical properties; essentially a fractal consists of patterns and lines of different
colours.

With a generation technique there is no original container file because the cover object
is completely generated, this provides a unique advantage over other steganographic tech-
niques that required an existing input container. If the original (unmodified) container file
exists, or is leaked, outside the secure domain this can provide an attacker with significant
information that can accelerate a steganalysis attack.

A steganography system that uses generation techniques should produce a fractal im-
age that fits the profile of those communicating. For instance, if Alice and Bob are car
enthusiasts, using pictures of cars has a natural plausibility and will not arouse suspicion.
This technique is disadvantaged by the fact that producing a steganography system that
generates realistic fractals is complex and time consuming. These disadvantages would
prevent a generation technique being used in time–critical situations such as real time
video steganography.

Research into generation techniques is very limited – this could relate to the fact that
the method of encoding data is often heavily dependent on the subject matter of the
fractal.

2.1.4 Transform Domain Techniques

Transform domain techniques are generally used on compressed container files. For in-
stance, data hiding in JPEGs is commonly achieved by operating in the frequency domain
and modifying the Discrete Cosine Transform (DCT) [And96,ZK95, ÓDB96]. One of the
earliest methods for hiding data in JPEG files relied on changing the LSB of the DCT
coefficients. This technique is relatively basic, and numerous steganalysis methods have
been developed which are easily capable of detecting covert data that is embedded using
this method (see 2.4). Other DCT-based methods, such as F5 [Wes01], Outguess [Pro01],
Model-Based [Sal05, Sal03], Modified Matrix Encoding [KDR06] and Perturbed Quantiza-
tion [FGS05] have been developed, all of which are dependent on modifying the discrete
cosine coefficients.

Discrete Cosine Transform

The DCT can be used to convert an image from the spatial domain into the frequency do-
main. The spatial domain represents data based on intensity of pixels. A steganographic
technique that uses LSB manipulation on a palette-based image (PNG or GIF) would be
working in the spatial domain, as changing the LSB modifies the pixel colour (intensity).
In contrast, DCT separates parts of an image based on frequency. Image signal energy is
generally stored in low-frequency regions, therefore high-frequency information can be dis-
carded or manipulated without causing significant degradation of image quality [WJN10].
Steganographic approaches that operate in the transform domain generally use proper-
ties of the DCT; there is very limited research in alternative transforms such as Discrete
Wavelet Transform (DWT) [KK10].

1Much of the information in this section is based on [Col03].

CHAPTER 2. LITERATURE SURVEY 8

The 2-dimensional DCT, F (n,m), of an N ×M pixel image is defined as follows:

F (n,m) =
2√
NM

C(n)C(m)

N−1∑
x=0

M−1∑
y=0

f(x, y) cos
(2x+ 1)nπ

2N
cos

(2y + 1)mπ

2M
(2.1)

where

C(n) = C(m) =

{
1√
2

if m = 0

1 if m ̸= 0
(2.2)

and f(x, y) is the intensity of the pixel at the xth row and yth column.

As mentioned previously, LSB manipulation cannot be applied to the colours of pixels
when working with lossy compression formats such as JPEGs. This is because JPEG
images use a DCT as part of the compression process, during which values such as LSBs
are not necessarily retained. Whilst the conversion between the spatial and the transform
domain (and vice versa) uses lossy compression, the discrete cosine coefficients are stored
using lossless encoding, therefore most JPEG steganography techniques encode data in
the discrete cosine coefficients.

2.2 Video Steganography

Video steganography is now a growing area of research as a video container file has numer-
ous advantages not exhibited by other container formats. Modification of a video file is
significantly more difficult to detect by the human visual system, as frames are displayed
on screen for extremely brief periods of time [AFJK+10]. Furthermore, video frames are
not crisp, sharply focused images, so variations in pixel colour induced by steganography
will blend into the frame. Video (especially high-definition video) container files are sig-
nificantly larger than audio or images files, thus reducing the problem of steganographic
capacity. Noda et al. overcame steganographic capacity issues by using a Bit Plane Com-
plexity Segmentation (BPCS) technique for wavelet compressed video data [NFNK04].
Similarly, Jalab et al. propose a frame selection method for hiding data in MPEG video,
again using BPCS [JZZ09]. BPCS achieves a high embedding rate, with minimal levels of
distortion. This is achieved by identifying noisy regions of an image frame, and embedding
a high density of covert data. Embedding high proportions of data in already noisy sections
of a frame does not cause any significant degradation of image quality [JZZ09,NFNK04].

Eltahir et al. propose and discuss the application of LSB manipulation in the context of
video [EKZZ09]. Unfortunately, their paper does not discuss the security of the technique.
LSB manipulation, in comparison to other techniques, is relatively easy to detect and
more often than not, steganalysis can be quickly performed on the distribution of LSBs to
determine the presence of a message (see 2.4). LSB embedding can be made more difficult
to detect by encrypting the covert data before embedding it in the container file. The
encryption process produces encrypted data with a more uniform distribution across the
ASCII range, thus suppressing any strong characteristics of the original covert data (see
figure A.8 and Section A.3.1) [Col03].

Singh et al. have published a video steganography technique that specifically addresses
hiding an image in a video [SA10]. They discuss the nature of a video file as a container,

CHAPTER 2. LITERATURE SURVEY 9

stating that rows of pixels that form an image can be spread across the frames that com-
prise the video. Whilst the proposed method centres around LSB manipulation, this is one
of the few papers that exploits the multi-dimensional aspect of a video container file. This
paper highlights that without the entire video an attacker will not be able to determine the
full meaning of a covert message (but note, this is not the goal of steganography; the goal
is to avoid detection). Singh et al. also claim that the proposed technique is “very useful
in sending sensitive information securely” without providing any supporting evidence or
justification for this claim, or the effectiveness of the proposed technique.

2.2.1 Transform-Domain

Westfeld and Wolf describe a system that uses a DCT method to embed data in the H.261
standard [WW98]. This method exploits the characteristics of H.261, and similarly, M-
JPEG and MPEG. These standards essentially use JPEG images to construct the picture
stream. As with JPEG, H.261, MPEG and M-JPEG use a discrete cosine transform as a
basis for the lossy compression that they use. Westfeld and Wolf describe a technique for
modifying “suitable” DCT blocks. This vetting quality ensures that the encoded message
cannot be detected just by analysing the DCT coefficients: a direct comparison has to be
made to the original container file [WW98].

Chae et al. also propose a DCT based method, in which the amount of data to be
embedded in each 8× 8 DC block is determined by a scale factor. This technique adjusts
the scale factor so that more data is hidden in textured areas, an approach based on
the understanding that “the human visual system is more sensitive to the changes in low
frequency regions than in highly textured regions” [CM99].

Motion Vector Techniques

The techniques described in this section focus on embedding data in motion vectors –
an explanation of motion vectors can be found in Section 2.3.1. A large proportion of
image and video steganographic techniques involve concealing data in DCT blocks, by
varying degrees. Alternatively, Prabhakaran and Shanthi propose a hybrid cryptography-
steganography method for hiding an Advanced Encryption Standard (AES) encrypted
message inside the motion vector of a video [PS12]. This technique is certainly worth
noting, as the overall quality of the video file is preserved, and an additional layer of
security is provided with use of AES cryptography.

Shanableh builds on the principle of motion vector encoding, by using a layered ap-
proach to encode data in the motion vector and quantisation scales [Sha12]. This proposed
method doubles the steganographic capacity of the container file when compared to other
motion vector based methods. This technique can only be used on raw video, however; in
the case of compressed video, simply adding a transcoding step will allow for the encoding
in both motion vector and quantisation scales. The number of quantisation scales available
in a coded video frame is limited; Shanableh increases this number for each frame by us-
ing “multilayer encoding” - two layers, a low-resolution base layer and a higher-resolution
enhanced layer, thus providing two quantisation scales for each macro block [Sha12]. This
technique provides a high steganographic capacity, whilst causing minimal degradation of
video quality. This method seems to specifically focus on increasing the steganographic
capacity of a video container file, something which is not necessarily essential, given how
one minute of video can contain in excess of a thousand frames.

CHAPTER 2. LITERATURE SURVEY 10

Fang and Chang document a method that focuses on the embedding of data inside
the motion vectors. In their scheme, they propose embedding the data in the phase angle
of the motion vector of macroblocks, a technique that works for both compressed and
uncompressed video [FC06]. As part of Fang and Chang’s proposed method, they select
candidate macroblocks for encoding based upon a magnitude threshold of the motion
vector, as modifications made to a motion vector of high magnitude (a fast moving object)
are relatively undetectable, whereas modifications to small motion vectors are likely to
produce noticeable changes.

Aly proposes a different approach to that of Fang and Chang. In Aly’s approach
he selects candidate macroblocks based on their prediction error, and the covert data is
embedded in the LSB of the suitable vectors [Aly11]. Under evaluation this technique
has proven successful, and keeps distortion and overhead to a minimum. Both Aly and
Fang et al. produce methods that are successful in encoding data with minimal distortion,
but their methods have one key difference. Fang and Chang select motion vectors based
on properties exhibited by the motion vectors themselves, whereas Aly selects motion
vectors based on the properties of the associated macroblocks. Although different, these
approaches yield similar results in terms of image quality [Aly11,FC06]. Aly compares his
approach with that of Xu et al. [XPZ06]: his findings show a better balance of the payload
(covert data) between P- and B- frames with his method [Aly11].

Motion vector approaches generally embed data based on the properties exhibited by
the motion vectors, or their associated marcoblocks. Most of the research into motion vec-
tor based approaches deal just motion vectors and their properties. However, as outlined
above, Aly’s approach of selecting candidate vectors based on their macroblocks is just as
successful, and offers slightly better preservation of quality.

2.2.2 Streaming and Real Time

Streaming videos across the internet has become an incredibly popular activity over the
last ten years [Mar03]. The FLV video format was specifically developed for delivering
videos across the internet.2 FLV is significantly simpler than other formats, and Mozo
et al. prove that injection-based steganography can be used with the FLV file format
[MOR+09] (all documented video steganographic techniques are substitution-based, not
injection based). FLV files can contain audio, video and meta blocks, each indicated by a
tag, and the technique involves injecting data at the end of a video block. This research has
proven that FLV files are highly resilient, and can undergo significant modification without
affecting the quality of the video playback. A significant disadvantage with injection-based
steganography is the fact that the file size inflates. However, the FLV format is sufficiently
resilient that video tags can be removed, and the integrity of the video is maintained. As
Mozo et al. prove, it is possible to compensate for the addition of covert data by removing
a corresponding number of video tags, although removing too many video tags has been
shown to cause some degradation to playback quality.

In comparison Liu et al. proposed a real-time steganographic approach that works
with the more complex MPEG-2 file format. Whilst their technique does work, by their
own admission [LLLL06] it is a fragile technique that neglects the resilience aspect of
steganography. The strengths, weaknesses and approaches of the methods proposed by

2Other formats such as RealMedia were also developed for internet streaming. FLV has become an
accepted standard for internet streaming, and websites such as YouTube, Hulu, VEVO, Yahoo! Video,
metacafe and Reuters use FLV [Con08].

CHAPTER 2. LITERATURE SURVEY 11

Mozo et al. and Liu et al. vary significantly. Injection-based methods (such as Mozo et
al.) are easier to detect than substitution techniques (Liu et al.) purely based on the
fact that injection-based methods modify the file-size – a factor easily noticed without ex-
tensive analysis. Given that both methods were specifically suggested for the purpose of
streaming video, we would argue that Liu et al.’s method would be preferable as container
file size is not increased by the covert data. Nonetheless, no form of data transmission,
including internet streaming is guaranteed to be free from error; with a fragile stegano-
graphic scheme, the slightest error in transmission could significantly impact the success
of the communication, and with this consideration Liu et al.’s approach is disadvantaged.

2.3 Video Coding

In this section of the literature survey we will explore the structure and format of video
files, focusing on aspects of video which are relevant to the H.264 standard. This section
starts with a more in-depth analysis of compression as used in multimedia formats before
addressing the specifics of video files.

2.3.1 Compression

So far we have looked briefly at how DCT is used to compress an image. Multimedia
formats, whether they be image, audio or video, can use compression techniques to reduce
the size of data that is needed to represent the original media. Most compression tech-
niques rely on producing an “alternative representation” in a domain different to that of
the original media [Muk11].

The Compressed Domain

Images are originally represented in the spatial domain, which as a function is represented
as I : Z2 → N3 whereby each coordinate of a 2D coordinate space maps to a three-
dimensional RGB colour vector. Video, being sequences of images is represented in the
spatiotemporal domain such that V : N× Z2 → N3 [Muk11,Fri10].

Let’s consider the implications of storing the output of these functions in an uncom-
pressed format. If we were to consider a single 1920 x 1080 image just over 2 million
pixels values will need to be stored. This is a substantial amount of information to store
for a single image. In the context of a standard video file3, a single second of video at
1920 x 1080 resolution would require between 49 and 63 million pixel values. Images
and videos contain vast quantities of data and storing this data in a raw, uncompressed
format is impractical for most situations, as a result, image and video formats typically
use an alternative representation. DCT and DWT are two of the more popular methods
for alternatively representing images and video, both of which belong to the compressed
domain [Muk11,Fri10].

Compression Considerations

Before data is represented in a compressed format important consideration should be given
to the trade-off between computational cost and storage requirements.

3Most videos range between 24 and 30 frames per second.

CHAPTER 2. LITERATURE SURVEY 12

The accuracy of the representation is another important consideration. For images
and video, an approximation of the original source if often sufficient, which means that
lossy compression schemes can be used, however, if the given application requires an exact
representation then a lossless representation must be used [Muk11].

Image and video compression methods should consider the following attributes [Muk11]:

• Reconstructibility From an encoded (compressed) representation it should be pos-
sible to decode/reconstruct the original data. In the case of lossy compression the
reconstruction can be an approximation.

• Low Redundancy The compressed representation should be as concise as possible.
Images in the spatial domain can have a high redundancy rate due to high spatial
correlation of neighbouring pixels. Correlation can also exist in the spatial domain
if we consider the context of video, neighbouring frames will have high temporal cor-
relation because the change in an image frame is very gradual from one consecutive
frame to another.

• Factorisation into substructures Decomposing an object into its component
parts can be useful for identifying those components whose contribution is relatively
insignificant. Insignificant parts can be removed or reduced further, thus reducing
the size of the compressed representation.

In Section 2.1.4 we saw how coefficient-based transforms such as DCT, DWT and even
a Discrete Fourier Transform (DFT) [Mit00] can be used to represent an image by the
form of an alternative representation. Whilst a single video frame can be represented
independently using any image representation technique, these methods do not harness
the temporal cohesion [Muk11]. Consecutive frames can have high temporal redundancy
because portions of the frame remain unchanged, and by examining the correlation between
consecutive frames a more concise representation can be used [Muk11,Ric08,Le 91].

A better representation of videos frames with a reduced temporal redundancy is to use
a Group of Pictures (GOP) technique. In a GOP, one of these frames will be a reference
frame which is called an Intra Frame or I-Frame. Other frames are then predicted by this,
and these predictions are represented as changes (deltas) from the preceding frame – these
are known as P-Frames. Some predicted frames are predicted from its two neighbours,
these are bi-directionally predicted frames and are called B-Frames [Muk11,Ric08].

Prediction errors and motion vectors are used to explicitly represent temporal cohesion,
however, there are some instances where this is not the case. Some frames are represented
as side information or parity bits that can be used decode the frame – these frames are only
approximations. Side information and parity bit encoding is often used for low complexity
compilers or in distributed environments so that each frame is encoded individually – this
method of encoding is called distributed video coding [Muk11,GARR05]

2.3.2 Quantisation

Quantisation is an important part of lossy compression, and accounts for its “lossy”-ness.
Compressed data is a smaller alternative representation of the original data. This process
of converting from one representation to another can often involve an intermediate repres-
entation. Quantisation is the process of scaling down the range of symbols that are used
in the intermediate representation. For instance, with a DCT a matrix of coefficients is

CHAPTER 2. LITERATURE SURVEY 13

produced whose values may range between −223 and 150, but after quantisation, these
values may only range between 10 and 130. The reduced range caused by the quantisation
process subsequently requires fewer bits to code the representation than the original range.
Quantisation parameters for multimedia formats are chosen based on how individual com-
ponents affect the average human perception [Muk11].

2.3.3 Coding Concepts 4

An encoder (compressor) and decoder (decompressor) forming a complementary pair is
known as a codec (enCOder/DECoder). The encoder is used to store or transmit video
by converting the original raw video format to an alternative (compressed) representation.
The decoder converts the compressed form back to the original video.

The H.264 codec consists of four main components: block-based motion compensation,
transform, quantisation and entropy coding.

A codec uses a model (an efficient alternative representation) to reconstruct an approx-
imation of the original video files. A codec should attempt to maximise on two conflicting
goals: high fidelity (high quality) video with high compression levels. Decoding an al-
ternative video representation that uses few bits often results in the decoder outputting a
poor, low quality approximation.

A video encoder consists of three core components: a temporal model, a spatial model
and an entropy encoder. The temporal model reads in a sequence of video frames and
attempts to reduce the temporal redundancy by identifying similarities between the neigh-
bouring video frames – this analysis usually involves computing a prediction of the current
video frame. With H.264 the prediction can be computed from multiple previous or future
frames. The prediction is improved by means of compensation for differences between the
frames – this is known as motion compensation prediction. The temporal model outputs a
residual frame and a set of motion vectors. The residual frame is computed by subtracting
the prediction from the current frame, motion vectors are used to describe how the motion
was compensated.

The residual frame from the temporal model is then fed into the input of the spatial
model. The spatial model, like the temporal model is concerned with removing redundancy
in its domain, in this case, the spatial model analyses neighbouring samples of the residual
frame (produced by the temporal model) to reduce the spatial redundancy. Spatial reduc-
tion in H.264 is achieved by applying a transform followed by a quantisation process. The
transform step produces a set of transform coefficients which are then quantised, removing
insignificant values, and returning the quantised transform coefficients as the output of
the spatial model.

The entropy encoder is the final component of the video encoder that produces an
encoded output from the results of the spatial and temporal model. The entropy encoder
processes the motion vectors from the temporal model and the coefficients from the spatial
model to produce a compressed bit stream consisting of motion vectors, residual transform
coefficients and header information.

Although the quantisation stages cause a loss of information, this process is roughly
reversible, and as such, the decoder mechanism works in reverse to that of the encoder.
The output produced by the decoder mechanism will only ever (in the case of H.264) be
an approximation to the original input because of the quantisation stages.

4Unless explicitly stated otherwise information in this section is based on [Ric08] and [Muk11].

CHAPTER 2. LITERATURE SURVEY 14

Temporal Model

The residual frame produced by the temporal model is produced by subtracting the pre-
dicted frame from the actual video frame. The resize of the residual frame is dependent
on the accuracy of the prediction process – the smaller the residual frame, the fewer bits
needed to code it. Prediction accuracy can be improved by calculating and propagating
compensation for motion from the reference frame(s) through to the current frame.

Motion compensation can significantly improve prediction calculations because two
successive video frames are usually highly correlated. Most of the information captured
in successive residual frames relates to the movement of objects in the scene, therefore
a better prediction can be produced by compensating for this change in motion between
frames. Changes between video frames can be caused by the motion of objects, changes in
the scenery and adjustments in light levels. With the exception of lighting and changes to
the scenery, these changes directly correspond to the movement of pixels between frames.
The movement of individual pixels between successive frames can be estimated. The
displacement movement of pixels in a video frame is known as an optical flow [AWSZ05].

In theory, it is possible to use the optical flow to predict the majority of the pixels
in the current frame, provided the optical flow is accurate, by displacing each pixel as
described by the optical flow.

Unfortunately, this is a very computationally intensive process, as each pixel will have
to be transformed, and each frame decoded, on a pixel-by-pixel basis using the optical
flow vectors. Whilst workable in theory, this would result in a large amount of residual
data, which is at odds with the desirability of a compact residual frame.

Macroblocks Motion Estimation

A macroblock is typically a 16× 16 pixel block of the current frame, in the wider context
of block-based motion estimation a block is any N ×M sample of a frame. Macroblocks
are used by a variety of codecs including MPEG-1, MPEG-2, H.261, H.263 and H.264.

Macroblock motion estimation starts by dividing each frame into macroblocks. In turn,
each macroblock is taken, and the reference frame is searched for a matching macroblock.
Macroblocks from the current frame are paired with macroblocks in the current frame by
choosing a candidate block that minimises the difference between the macroblock in the
current frame and itself – this process provides a residual block. Finally, the residual block
is encoded and stored, alongside the difference between the current macroblock and the
candidate macroblock, called a motion vector.

Using a 16 × 16 size macroblock can cause some problems with certain motions and
object outlines. If a macroblock and its corresponding candidate macroblock have a large
difference (residual energy), then the number of bits required to code this macroblock
increases and inflates the bit-rate. This issue can be addressed rather simply by decom-
posing a macroblock into smaller 8 × 8, or even 4 × 4 macroblock size. Using smaller
macroblocks results in a larger number of blocks, which can be disadvantageous, therefore
a better solution is to use an adaptive block size approach as used by H.264.

2.4 Steganalysis

Steganalysis is the art and science of detecting messages that have been hidden in container
objects via the application of steganography. In the Prisoners’ Problem (Section 1.3.1)

CHAPTER 2. LITERATURE SURVEY 15

it is the Warden’s job to use steganalysis to attempt to determine whether a message is
present in communication channels. Just like with steganography, there are numerous
different methods for steganalysis, but from a theoretical stand-point, for steganalysis
to be successful, the results only need to show a higher probability of detection than
random guessing [Fri10]. Steganalysis has also been described as “the process of detecting
with high probability and low complexity the presence of covert communication through
innocuous multimedia distribution” [BK04]. It is perhaps worth noting that steganalysis
only needs to detect the presence of a hidden message, the exact process of determining
what the embedded message reads is reserved for the field of forensic steganalysis [Fri10].

2.4.1 Overview of Steganalysis Techniques

Steganalysis techniques can be split into two different categories:

• Targeted steganalysis

• Blind steganalysis

Both targeted steganalysis and blind steganalysis can use a statistical approach known as
statistical steganalysis.

Targeted Steganalysis

Targeted steganalysis can be performed when the warden knows the algorithm or any
aspect of the stegosystem that is being used. Targeted steganalysis is generally simpler
than blind steganalysis, because the attacker knows some aspects of the mechanics behind
the stegosystem.

Example
Let us assume that we have a stegosystem that encodes a message in the LSB
of a palette-based image, in which each pixel is represented by three bytes
(one byte for each RGB component).
A simple targeted attack can be produced to detect this steganographic
scheme. By forming a string of the LSB characters, we can then compare
the frequency of ASCII characters represented in this string. If a message is
encoded we will see a spike corresponding to the frequency of characters that
compose the latin alphabet [Col03]. Figures 2.2 and 2.3 illustrate a container
before and after the application of the suggested steganographic scheme.
Compare figures 2.2 and 2.3, notice that in figure 2.3 there is a significant
increase in frequency for ASCII values 32, 65-90 and 97-122. These values
reflect the space character; and upper and lower case A-Z characters. This
illustrates that with the simplest form of LSB encoding it is possible to detect
the presence of embedded data based on ASCII frequency. This technique is
akin to the analysis that is used for substitution ciphers in cryptography. The
language of the plain-text (or in this case, covert data) will have language
specific properties reflecting, for example, the fact that the letter E is the
most common letter in the English language [Sch96].

CHAPTER 2. LITERATURE SURVEY 16

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

ASCII Value

F
re

q
u

e
n

cy

Figure 2.2: ASCII distribution from LSB
string before data is embedded in a PNG
image.

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

ASCII Value

F
re

q
u

e
n

cy

Figure 2.3: ASCII distribution from LSB
string after data is embedded in a PNG
image.

Figure 2.4: Comparison of ASCII distributions from LSB strings of image data

Blind Steganalysis

In the context of blind steganalysis the warden does not know anything about the stegano-
graphic system that is potentially being used to hide messages in a container object. Blind
steganalysis is significantly more complex as an ideal steganalysis algorithm should be able
to detect every possible steganographic scheme [Fri10].

Statistical Steganalysis

Detecting the presence of steganography can be a complex issue, especially when a multi-
dimensional container file (such as an image or video) is being used. In reality, the “detec-
tion problem” that is encompassed by steganalysis is resolved by representing the container
file as a set of numerical functions [Fri10]. Statistical steganalysis can be used for both
blind steganalysisblind and targeted steganalysis.

2.4.2 Video Steganalysis

With any stegosystem covert data is embedded in a container file, regardless of whether
this is happening in the spatial or transform domain. Zhang et al. identify that covert data
is usually of a higher-frequency signal in comparison to the rest of the image; with this
knowledge they propose a system for video steganalysis based on aliasing detection. Their
method uses Haar wavelet filters to distinguish between the container and covert data.
With a Haar wavelet filter, a lowpass filter provides an approximation of the container,
whereas a highpass is able to extract the higher frequency covert data. Further statistical
analysis is conducted using the Laplacian distribution [KP03] to distinguish hidden data
from the natural container frame. This approach has been shown to yield good results
with a low false-negative and false-positive for the tests conducted [ZSZ08].

Video steganalysis is a largely unexplored area, with most research centring around
steganographic methods as opposed to steganalysis [CZF12]. Current steganalysis research
models videos as images, whereby the embedding process modifies the Gaussian noise of

CHAPTER 2. LITERATURE SURVEY 17

Example:
Plaintext: the quick brown fox jumps over the lazy dog

Ciphertext: wkh txlfn eurzq ira mxpsv ryhu wkh odcb grj

Figure 2.5: Caesar cipher example

a frame [BKZ06, ZSZ08,PDB09, JKH07]. Steganographic approaches that utilise motion
vectors for data hiding are becoming more and more ubiquitous; therefore this model is
likely to become less relevant as the properties of motion vectors are being exploited.

Cao et al. propose a method for detecting motion vector based encoding for sub-
optimal methods of data hiding. Modification to motion vectors can significantly modify
the internal dynamics of video compression. The fundamental principle behind their re-
search relies on decompressing the video to the spatial domain before re-compressing.
They argue that this decompression and re-compression cycle is likely to revert the mo-
tion vector values back to their unmodified state, where prediction errors can be used to
perform statistical analysis at various stages of the re-compression process [CZF12].

2.5 Cryptography

Cryptography is the study and practice of secret writing. Evidence of cryptography can
be found in the earliest forms of writing and date back thousands of years. Despite the
age of the field, improvements and innovations have not been frequent with many schemes
being invented and reinvented since its inception [Dav97].

2.5.1 Substitution Ciphers

Caesar’s cipher is one of the oldest and most well-known substitution ciphers. Encrypting a
message with the Caesar cipher can be done by replacing each character with the character
that occurs 3 to the right in the alphabet (modulo 26) [Sch96] – see figure 2.5.

Substitution schemes dominated the field of cryptography between 1400 and 1850.
Most schemes like the Caesar cipher, used a fixed table of letter substitutions. Substitution
ciphers are very weak because they do not adjust the letter frequencies. In the English
language “E” is the most common letter, so the most frequent letter of a fixed substitution
cipher is likely to be E (assuming the original message is written in English) [Dav97,Sch96].

The Vigenère cipher was another popular substitution based cipher that became pop-
ular in the 19th century [Dav97]. This cipher is regarded as a polyalphabetic substitution
because it involves multiple substitution alphabets [BF11]. The encryption and decryp-
tion process is described below mathematically, where C represents the ciphertext , M the
plaintext and K the key. The size of the key is denoted by |K|.

Vigenère encryption:

Ci = Ek(Mi) = (Mi +Ki mod |K|) mod 26 (2.3)

CHAPTER 2. LITERATURE SURVEY 18

Vigenère decryption:

Mi = Dk(Ci) = (Ci −Ki mod |K|) mod 26 (2.4)

In addition to polyalphabetic ciphers like the Vigenère, the Playfair cipher is an example
of a polygram substitution cipher, whereby groups of letters are encrypted together. The
Playfair cipher was invented in 1854 and used by the British during World War I [Sch96,
Kah67].

2.5.2 Symmetric Algorithms

Symmetric encryption algorithms use a single cryptographic key (regarded as a shared
secret) to perform encryption of plaintext and decryption of ciphertext [Sch96,DK07]. In
most cases a symmetric encryption algorithm will use exactly the same key for encryp-
tion as it does for decryption, however, some symmetric algorithms work by deriving the
encryption key from the decryption key, or vice versa [Sch96].

The security of symmetric algorithms ultimately rests with the security of the key. The
key must remain secure for as long as the encrypted contents must remain secure [Sch96].

Symmetric algorithms, due to their design, are either block ciphers or stream ciphers.
A block cipher will operate on groups of bits (referred to as a block). Most modern block
ciphers have a block size of 64-bits. On the other hand, stream ciphers will operate on an
individual bit-by-bit basis [Sch96].

Data Encryption Standard (DES)

Although currently regarded as insecure, Data Encryption Standard (DES) is one of the
earliest and best known algorithms for encrypting electronic data. DES, a 56-bit block
cipher, was developed by Horst Feistel as part of his work for IBM in the 1970s [Fei73,
Smi71], by 1979 it would become standardised as the U.S Data Encryption Standard
[Sch96]. DES remained as encryption standard for 18 years until January 1997.

Advanced Encryption Standard (AES)

The AES is the current de facto encryption algorithm for securing sensitive information,
and is used by governments and militaries across the world.

In January 1997 the National Institute of Standards and Technology (NIST), a sub-
division of the U.S Department of Commerce, start looking for a replacement to the DES
which had been the encryption standard for nearly two decades.

Candidate algorithms were submitted to NIST for consideration as alternatives to
DES. All of the algorithms submitted were subjected to review and analysis by NIST and
the general public. The candidate algorithms initially submitted to NIST were: CAST-
256, CRYPTON, DEAL, DFC, E2, FROG, HPC, LOKI97, MAGENTA, MARS, RC6,
Rijndael, SAFER+, Serpent, and Twofish. These 15 algorithms were then narrowed down
to a shortlist of: MARS, RC6, Rijndael, Serpent, and Twofish [Wan09].

Rijndael (pronounced “rain dahl”) was finally chosen as the AES out of the shortlist of
candidate algorithms. The Rijndael algorithm was developed by Belgian cryptographers,
Joan Daemen and Vincent Rijmen.

CHAPTER 2. LITERATURE SURVEY 19

The exact workings of AES and symmetric cipher block modes are discussed in con-
siderable detail in Section B.

2.5.3 Asymmetric Algorithms

Asymmetric algorithms or public-key cryptography works on the premise of a public key
and a private key. The public key can be known for anyone and is used to encrypt plaintext,
the private key should remain secret to the owner and is used to decrypt ciphertext [Sch96,
DK07]. In symmetric cryptography the encryption and decryption key are identical, or
are derived from one another. Asymmetric cryptography survives on the premise that the
private key cannot be easily derived in any reasonable amount of time from the public
key [Sch96].

The history of public key cryptography in the literature is rather interesting. The initial
idea of public and private key cryptography was first published by Diffie and Hellman in
their paper, New Directions Cryptography [DH76] in 1976. Two years later Rivest, Shamir
and Adleman published the RSA cryptosystem in [RSA78].

Prior to these publications James Ellis and Clifford Cocks, mathematicians and cryp-
tographers working for the UK’s Government Communication Headquarters (GCHQ) had
already outlined concepts for asymmetric cryptography in private publications. In 1970,
Ellis wrote his paper, The possibility of non-secure digital encryption, in which he provides
the earliest practical mention of public key cryptography [Ell70]. The paper was kept as
a private document until December 1997 when it was published alongside 4 other papers.
Amongst those other papers was, “A note on non-secure encryption” – a paper written by
Cocks in 1973 which for all intents and purposes describes what is now widely known as
the RSA algorithm [Coc73].

RSA Cryptosystem

RSA utilises two large and distinct prime numbers p and q for the generation of public
and private keys. The process of generating the keys is the most complex part of the RSA
algorithm. The security of the RSA algorithm resides in the fact that prime factorisation
of a number is a very expensive computational process. Depending on the size of the
number, prime factorisation can take, hours, days, months or even years. In the RSA
algorithm, the private and public key are generated as follows [FSK10,Sti02]:

1. Two distinct primes p and q are chosen at random.

2. Compute n = pq

3. Compute ϕ = (p− 1)(q − 1)

4. Choose an integer e such that e and phi are coprime.

5. d is calculated as the inverse of e mod ϕ.

Encryption Process
To explain the encryption process let us assume that Alice wants to send Bob a message,
M. Before Alice can send anything encrypted she needs Bob’s public key that consists of n
and e. Alice first converts the message M into an integer m, the corresponding ciphertext
for this message is then calculated as follows:

CHAPTER 2. LITERATURE SURVEY 20

c ≡ me mod n (2.5)

Alice then sends c to Bob. This process of encrypting is not reasonably reversible, as it is
computationally hard to derive m from x, e and n.

Decryption Process
Bob can decrypt Alice’s ciphertext, c, by using his private key, d.

m ≡ cd mod n (2.6)

Encryption and Decryption Key
The public encryption key consists of the pair (e, n) and the decryption key is formed of
the pair (d, n), additionally p, q and ϕ must also be kept secret.

The encryption and decryption processes shown by 2.5 and 2.6 are very similar. Despite
their similarity the method remains secure because finding the prime factorisation of n
is computationally hard. If an attacker was able to factorise n in a reasonable time they
could determine p and q, hence ϕ, and hence d. Provided (d, n), p, q and ϕ remain secure
it is not possible to derive d from e.

2.6 Summary

There is a growing range of techniques for embedding data in video container files, many
of them built on the principles of image steganography. For instance, a large number of
techniques use DCT coefficients and as such, these techniques are limited to the MPEG
video codec. Recently, more versatile techniques such as motion vector based approaches
have started to emerge and are quickly becoming commonplace.

Streaming video across the internet has become incredibly popular over the last seven
years. Some of the steganographic approaches that have been discussed were proposed
specifically for “real time video” and “streaming”, however these approaches neglect some
aspects which are contextually important.

Codecs generally encode data using information relative to other reference frames
stored in the bit-stream. Although the structure of a video file may be complex and
delicate, the process of encoding and decoding a video can be easily broken down into
component models and entropy encoding. Motion estimation and motion prediction play
a key role in reducing the bits required to encode a video frame. Motion estimation is
commonly achieved using fixed size macroblocks, although some formats such as H.264
adopt an adjustable macroblock approach.

Steganalysis is mainly a statistical approach, whereby a container file is represented as
a set of numeric functions. These functions usually model a container file in part, and will
attempt to determine whether a message is embedded within it. The goal of determining
the content of a message is reserved for the field of forensic steganalysis.

The field of cryptography provides useful methods for securing messages and informa-
tion. Straightforward substitution ciphers are now a thing of the past with widely adopted
asymmetric and symmetric cryptographic algorithms being at the forefront of the field.
AES and RSA are two highly secure and heavily utilised encryption algorithms.

This chapter has reviewed the various steganographic techniques, including some fun-
damentals that have been documented in the literature. The workings of the relevant

video formats and coding methods have also been researched. Finally, consideration has
been given to the security of steganographic methods and how these can be fortified with
the application of steganography.

Chapter 3: Requirements and Analysis

3.1 Project Overview

The primary aim of this project involved developing a cross-platform video steganography
system that is capable of embedding data in a video container file using a motion-vector
based approach. The intention was to produce a system that is both highly secure and
practical. Once we established our initial embedding method our intention was to further
develop other schemes and compare their effectiveness using steganalysis.

The requirements and analysis that are discussed below were adjusted as the project
developed, due to the various design and implementation decisions outlined in Chapter 4
– this is a consequence of the agile methodology used during project development.

Measuring the security of a system is contentious as any security mechanism should
have a timeless quality to it, whereby a system that is developed today should be secure for
years to come. Irrespective of how comprehensive our steganalysis, testing and evaluation
methods are we will not be able to determine whether our system is sufficiently secure in
the timescale that this project permits. We have opted to address this issue by utilising
cryptography within our steganographic solution.

By incorporating tried and tested cryptographic methods we aim to ensure at least
a minimum level of security for the messages that are being communicated. We would
like to stress that this will not inherently make the steganographic schemes we devise less
detectable. However, as we saw in Section 2.2 of the literature survey, encryption can
be used in conjunction with steganography to obfuscate the presence of embedded ASCII
messages.

3.2 Requirements

In this section we outline the functional and non-functional requirements for our project.
Both the functional and non-functional requirements are categorised into mandatory, de-
sirable and optional. Mandatory requirements are necessary for our system to function
correctly. Any desirable requirements are important, but, our system will still function
without these being implemented. Optional requirements will provide additional enhance-
ments to our system, but we should only consider implementing these if we have the time.
Our goal will be to implement all of the mandatory and as many (but hopefully all) of the
desirable features.

3.2.1 Functional Requirements

• Mandatory

21

CHAPTER 3. REQUIREMENTS AND ANALYSIS 22

1. Underlying transcoding mechanism – iterate and parse video frames.

2. Allow a steganographic scheme to modify the motion vectors of a video frame.

3. Retrieve and inspect video meta data to determine that the specified video file
uses codecs supported by our system. Also allow the user to inspect details of
a video file.

4. Implement a basic embedding algorithm that can use an LSB approach to
embed one bit of data per frame.

5. Implement an extraction algorithm capable of retrieving messages encoded as
per requirement 4.

6. Use AES cryptography to encrypt the message before it is embedded.

7. Use AES cryptography to decrypt the message after it has been extracted.

8. Steganalysis – playback of steganographic video file and original video file with
the ability to step through frames one at a time and compare the output side-
by-side.

9. Steganalysis – for a specified frame of the original and steganographic video
file, allow the corresponding motion vectors to be analysed and compared.

10. Support the embedding of standard text-based ASCII messages.

• Desirable

11. Use different keys for steganography and cryptography.

12. Use a steganographic key to determine the placement of covert data in the
container file.

13. Support the embedding of message data without constraints on the format of
the data to be embedded.

14. Implement additional, more complex, embedding schemes.

15. Implement counterpart extraction schemes for any additionally implemented
embedding schemes.

16. Automatically detect parameters (steganographic scheme, etc) when extracting
an embedded message.

17. Steganalysis – allow motion vector analysis of neighbouring frames to spot
uncharacteristic changes in motion vectors.

• Optional

18. Implement an embedding and extraction scheme that utilises the audio stream.

19. Allow the user to define parameters for steganographic schemes (e.g. low
steganographic capacity and difficult to detect vs. high steganographic capacity
and easy to detect).

20. Develop more sophisticated steganalysis tools.

CHAPTER 3. REQUIREMENTS AND ANALYSIS 23

3.2.2 Non-Functional Requirements

• Mandatory

21. Cross-platform – supports Windows, Linux and Mac OS operating systems.

22. The application should be easy to use.

23. The graphical user interface should be clean, intuitive and unambiguous.

24. Progress of time consuming processes such as embedding and extraction should
be clearly indicated to the user.

25. The system should support appropriate video formats.

26. Allow the user to specify a steganographic/cryptographic key.

• Desirable

27. The extraction process should be fast.

28. The embedding process should be fast.

29. The user should be able to select their preferred embedding scheme.

30. Warn the user if the payload is greater than the steganographic capacity of the
container before embedding begins.

• Optional

31. Support multiple motion-vector based video codecs.

32. Support automatic software updates.

3.3 Analysis

3.3.1 Application

The requirements define an application capable of embedding data using steganographic
methods, and providing tools to analyse and compare video files for the purpose of stegana-
lysis. Requirements 21, 22, 25, 32 relate specifically to the overall application, whereas
requirements 23 and 24 detail the requirements for the graphical user interface of the
application.

The aforementioned requirements focus on ease of use, clarity and portability. In
[Sch96], Schneier reminds us that security is a “trade-off”, the more secure a solution the
greater the inconvenience it can cause to society. The practical and social implications of a
security system should, he argues, always be a key consideration – producing a system that
has real-world practical application is certainly an ideal. Therefore, specific consideration
has been given to the simplicity and easy of use of the application as a complex security
tool will deter most users because of the inconvenience of complexity. Our requirements
look at hiding the complexity of video steganography from the user, by the use of a clear
graphical user interface (requirements 22 and 23).

CHAPTER 3. REQUIREMENTS AND ANALYSIS 24

3.3.2 Steganography

Applying steganographic techniques to a video file will rely on the ability to parse such a
file (requirement 1) and demultiplex audio packets from video packets so that each video
frame can be processed before multiplexing the resulting packet data for output as a video
file.

For each video frame that is processed we will be required to inspect the motion
vectors (requirement 2), and determine what modifications need to be made to the vector
in order to embed information. Requirements 4 and 5 will utilise the ability to modify
motion vector values for basic LSB embedding and extracting. The requirements stipulate
a basic encoding and extracting method under the mandatory requirements because we
were initially unsure of the complexities associated with working with video frames. Whilst
several papers relating to the use of motion vector encoding are discussed in Section
2.2.1 of the literature survey, these papers merely provide a high level description of
the technique without providing an insight into how to extract or modify motion vector
values. These papers cover steganographic techniques for a variety of codecs, and as per
requirement 25, we will select a motion vector based codec that is best suited to motion
vector manipulation. Our research thus far indicates that the H.264 codec will work well
for motion vector manipulation. Other macroblock based codecs such as H.261 and H.263
are somewhat restrictive as they support a limited range of video frame resolutions.

Requirement 10 states that the system only needs to support text-based ASCII mes-
sages initially – simplifying the data that we are processing should facilitate the con-
struction of a stable steganographic system before introducing potential complexities that
might arise from working with other data. Only supporting an ASCII text messages is a
considerable limitation, therefore it is desirable that the system progresses to support any
message (requirement 13). Implementing requirements such as requirement 13 will give
greater control to the user and provide them with a greater level of flexibility in how they
use the application.

Constraints on the type of data that can be embedded in a video container have arisen
from the limitations that were discovered during the design and implementation phase
(see Section 4).

As we have already identified in this report, the security of our steganographic system
will be extremely difficult to ascertain, especially during the lifetime of the project, there-
fore the use of AES cryptography to secure the message will be mandatory (requirements
6 and 7) – at the very least this will ensure that the contents of the embedded message
are secure. The user will be able to set a steganographic key (requirement 12) but, a
different key should be used by the cryptosystem (requirement 11), so that a flaw in the
steganographic algorithms will not compromise the security of the encryption key.

Video files are densely packed with data and ideally a steganographic solution should
be capable of embedding information in as much of this data as possible. Therefore, it
is highly desirable that more sophisticated embedding schemes are investigation to fully
exploit the properties of video files (requirement 14, 15 and 16). The implementation
of more complex methods is only desirable and not mandatory because of the unknown
complexity of manipulating video data.

CHAPTER 3. REQUIREMENTS AND ANALYSIS 25

3.3.3 Steganalysis

The requirements for the steganalysis aspects of the software are initially basic. The
proposed steganalysis requirements (8, 9 and 17) define tools that will be helpful to a
user who wants to perform steganalysis – the process of steganalysis is not intended to
be purely computerised. This approach to steganalysis has been reached based on the
knowledge gained by conducting the literature survey. As with cryptography, there is no
“special formula” or algorithm for detecting steganography, therefore generic tools capable
of providing useful analysis (regardless of the embedding scheme) have been specified.

3.4 Testing Strategy

Several key components of the system will depend on other components and testing these
will not be straightforward. For instance, to be able to test the encoder works properly
we will either need the steganalysis tools to be developed so that this can be manually
verified, or the decoder will have to be developed to extract the message. Once the encoder
and decoder are developed any supported video file and message can be used to test these
two components of the overall system.

Some components, such as the AES cryptosystem, will be utilised by other components
of the system but will not depend on any itself. Unit testing can be used to test the
cryptosystem, and parts of the encoder and decoder will be unit testable.

System testing will be needed to test all of the components working together. Video
files produced by our system will have to be manually tested to determine that the files
are still capable of playback, and that any degradation of quality is reasonable.

In the majority of situations standard testing approaches such as unit testing and
system testing will enable us to test the functionality of the system. This is especially
true for those features which can be quantitatively measured.

By definition, a steganographic scheme should make it difficult, if not impossible, for an
adversary to determine the presence of a message. To an extent, the difficulty associated
with performing steganalysis on a steganographic scheme should also be considered a
testable parameter, however, this does heavily overlap with evaluation.

3.5 Evaluation Strategy

We will primarily evaluate our system by cross-referencing the final product with the
requirements that are defined in this chapter. For a successful implementation our system
should implement all of the mandatory features.

We can further evaluate our project by comparing it to third-party software projects.
We have found only three software applications1,2,3. that are capable of performing some
method of video steganography. We can compare our software product with these applic-
ations to evaluate the overall quality of the solution that we have produced.

Throughout the project we will evaluate the effectiveness of our steganographic schemes
by using steganalysis. However, just because we cannot spot flaws and trends in our
schemes does not mean that they are secure and free from error, therefore we will attempt

1Our Secret – http://www.securekit.net/oursecret.htm
2OpenPuff – http://embeddedsw.net/OpenPuff_Steganography_Home.html
3MSU StegoVideo – http://www.compression.ru/video/stego_video/index_en.html

http://www.securekit.net/oursecret.htm
http://embeddedsw.net/OpenPuff_Steganography_Home.html
http://www.compression.ru/video/stego_video/index_en.html

to use third-party tools to perform further steganalysis. StegSecret4 is an open-source tool
capable of performing steganalysis on various media formats (including video) that can be
used to evaluate the effectiveness of our steganographic schemes.

Whilst most of the evaluating of the steganographic techniques will have to be done
by ourselves using our own steganalysis (together with third-party tools), we can also
evaluate aspects of the software product based on feedback from other users. By releasing
the application to test users we can ask them to evaluate the graphical user interface and
ease of use of the application. Involving external users will help us to evaluate whether we
have met some of the more subjective, user-oriented requirements such as requirements 22
and 23. Furthermore, we hope that by utilising feedback from end-users, we will be able
to not only ensure that we have met all of the requirements defined in this chapter, but
have also implemented a practical and user-friendly application.

3.6 Chapter Summary

In this chapter we have outlined the requirements of our system and our proposed testing
and evaluation strategies, basing our analysis in part on knowledge gained in conducting
the literature survey (see Section 2).

Detailed consideration has been given not only to the requirements of the stegano-
graphic scheme, but also the practical implications of attempting to develop a usable
steganography application.

As a result of our analysis we have also identified that the amount of information
relating to the implementation of video transcoding and video steganography in the public
domain is extremely limited, and in the case of video steganography, almost non-existent.

In Section 4 we will discuss how the designs and implementations have been adapted
following the requirements and analysis undertaken in this chapter.

Chapter 4: Design and Implementation

Whilst there are numerous software development models the nature of our project has
simplified the selection process. Software development processes such as the waterfall
and V model have been disregarded because of their rigid structures, opting for an agile
software development approach which is more reactive and iterative in its nature.

Developing a steganographic technique that is capable of hiding data in a video file
lies at the heart of this project, and it is desirable that the resultant solution is as secure
as possible. Agile design methods allow us to evaluate and improve on our implemented
techniques as we progress. Furthermore, our survey of the literature and our preliminary
research (see A.2) yielded extremely limited information on how to design and implement
a video steganography system of this nature. With this in mind, agile development would
allow us to make substantial changes to the design and implementation at any point –
something which cannot easily be achieved with other software engineering models.

4http://stegsecret.sourceforge.net/

26

http://stegsecret.sourceforge.net/

CHAPTER 4. DESIGN AND IMPLEMENTATION 27

It is at this juncture that we would like to point out that our research has been
substantially more experimental than we could have possibly foreseen. Our choice of
an agile development process has been a proven blessing on numerous occasions. While
the majority of this chapter will document the design and implementation of our final
solution, we will also highlight how our design and implementation have changed with the
iterations. Arriving at the final state of implementation has been a complex process and
several important lessons have been learnt along the way.

4.1 Design Decisions

In Appendix A.3 we discuss aspects of our initial research which involved a broad invest-
igation of steganography (using audio, image and video containers). The insight provided
by this research influenced the design decisions that follow.

In our preliminary research we identified, explored and implemented some of the meth-
ods used to embed messages in audio and image files. This approach allowed us to develop
knowledge of how to manipulate spatial (image) and temporal (audio) data for the pur-
poses of steganography. The resulting tools allowed us to embed messages in WAV audio
files and PNG images.

The bulk of our preliminary research was dedicated to developing an understanding of
video coding and manipulation. As we discuss in sections 4.1.1, 4.2.2 and A.3 this early
research used Xuggler and Java. Although Xuggler and Java eventually proved unfit for
our purposes, this allowed us to demonstrate how to manipulate video frames, and how
subtle pixel colour manipulations were not possible because of the transform domain based
compression that is used to represent video frames.

4.1.1 Libraries

Given the timescale for this project it would have been impossible to develop a video
coding1 tool with the level of functionality that we required for our project. Developing a
video coding tool from scratch, that was capable of coding frames of a video stream would
be time consuming and complex in its own right, given the coding process that is used
by the majority of video codecs (Section 2.3). Therefore we opted to use FFmpeg2 – a
comprehensive audio/video library written in C for manipulating multimedia data.

As we explain in sections 4.2.2 and A.2 we also used Xuggler 3, a Java wrapper for the
FFmpeg library. This was abandoned because it did not allow us the low-level manipu-
lation that is required by our project. Java and Xuggler were later reintroduced to our
project for the sole purpose of developing the GUI part of our solution (which is discussed
in Section 4.2.3).

4.1.2 Codecs

As our system will utilise the FFmpeg library we decided to limit our choice of codecs to
those that use macroblocks and are already supported by FFmpeg. In our literature survey

1The term “video coding” is used to refer to the process of transcribing a video into bytes to be stored
on disk. This should not be confused with embedding data in a video.

2http://www.ffmpeg.org/
3http://www.xuggle.com/xuggler

http://www.ffmpeg.org/
http://www.xuggle.com/xuggler

CHAPTER 4. DESIGN AND IMPLEMENTATION 28

we highlight how video affords a far superior steganographic capacity when compared to
other media formats such as audio and images.

H.264 is the most popular video codec on the internet with at least 66% of all online
videos being encoded with H.264 [Sch10]. BBC iPlayer, DaCast, PlayStationStore Movies
& TV Shows, Vimeo, Vudu and YouTube all use H.264 for the encoding of HD video
[Ros08,DaC,Dip08,Vim,Stu08]. In addition to the factors mentioned above, H.264 is also
the most common video codec used by modern camcorders and cameras [Cas10].

4.2 System Design

4.2.1 Overview

The design of this system has been split into two major components:

• The steganographic tool

• The graphical user interface

By separating these two major areas of the system, we can develop them using the pro-
gramming languages, libraries and tools that are best suited for the given task. This
concept is inspired by unix-based operating systems, where graphical user interfaces are
often used as a “middle man” between the user and a command line tool.

Furthermore this structure places the core steganographic tools in a single executable
that could be re-used for other projects and by others. For instance, there are numer-
ous video conversion programs available on the internet that use the FFmpeg binary for
converting a video. In general, these tools simply provide a GUI that interacts with the
standard input and output of the FFmpeg command-line binary.

4.2.2 Command Line Tool

The command line tool will be the main product of this solution and will contain the
steganographic algorithms for embedding and extraction, as well as analysis tools for
steganalysis.

Programming Language

As stated in requirement 21, our system needs to run as a cross-platform solution under
Linux, Mac OS and Windows. Java would easily allow us to develop a cross-platform
solution, as implementations of the Java Virtual Machine (JVM) exist for these platforms.

Unfortunately, our early research highlighted limitations with developing a video steg-
anography system in Java using Xuggler (Section A.3.3). In short, Xuggler did not provide
the low-level functionality needed to manipulate a video file. With this in mind we con-
sidered other Java libraries (including Java Media Framework (JMF)), and even the pos-
sibility of writing our own wrapper using the Java Native Interface (JNI)4. Whilst using
the JNI would be an option, it was still unclear to us at the time whether the limitations
we encountered were solely due to the development state of Xuggler, or whether FFmpeg
did not support what we wanted it to do.

4http://docs.oracle.com/javase/6/docs/technotes/guides/jni/

http://docs.oracle.com/javase/6/docs/technotes/guides/jni/

CHAPTER 4. DESIGN AND IMPLEMENTATION 29

Ultimately, our choice of programming language was governed by the fact that our
project relies heavily on video manipulation. We therefore opted to develop our video
steganography tool in C, despite having no prior knowledge of C. C would allow us to
do what we could not do with Java because of the FFmpeg library and the low-level
functionality afforded by interfacing directly with the library. Developing a system in a
new programming language was certainly risky, however, as this would introduce its own
learning curve. Whilst C is widely supported on Linux, Mac OS and Windows, developing
a cross-platform solution in C is more complex than it is in Java, as you have to consider
the differences in the operating systems.

With Java, bytecode compiled on one processor architecture will run on any other
processor because the JVM provides an operating system independent platform on which
the bytecode can run. The complexity of dealing with different processor architectures is
reserved for the given JVM implementation.

On the other hand, C is compiled for a specific processor architecture, and the program-
mer must consider the differences between operating systems and processor architectures.
Whilst this makes the process of developing a cross-platform solution more complex, it is
still achievable.

It should also be noted that C will provide far superior performance than any solution
produced using Java, because Java solutions have to run on top of the JVM. Naturally,
the JVM will introduce an overhead as this runs on the processor and acts as a “middle
man”. In addition to this, the performance of a solution developed by us will be limited by
the performance and optimisation of the JVM implementation. In contract, C is a highly
efficient programming language that is executed directly via the processor, and as such it
is used heavily by other computationally intensive domains such as 3D graphics.

Commands Overview

The command line tool will accept any of the commands listed below. Angle brackets
indicate required arguments and square brackets are used to denote optional arguments.

• -cryptographic-algorithms

Lists the names of the supported cryptographic algorithms.

• -decode <inputFile> <outputFile> <scheme> [key]

Decodes the embedded payload of the inputFile to the outputFile using the spe-
cified steganographic scheme and key. scheme should specify one of the scheme
names returned by -schemes.

• -decrypt-test-vector <algorithm> <blockMode> <keySize> <key>

<cipherText> [initalisationVector]

Runs the decryption process for the given algorithm with the specified parameters
to verify the correctness of the decryption algorithm. [initalisationVector] is an
optional parameter that is only needed when the CBC blockMode is used. algorithm
should specify one of the scheme names returned by -cryptographic-algorithms.

• -encode <inputFile> <objectFile> <outputFile> <scheme> [password]

Encodes an objectFile into a container object (inputFile) using the specified
steganographic scheme and password. scheme should specify one of the scheme
names returned by -schemes.

CHAPTER 4. DESIGN AND IMPLEMENTATION 30

• -encrypt-test-vector <algorithm> <blockMode> <keySize> <key>

<plaintext> [initalisationVector]

Runs the encryption process for the given algorithm with the specified parameters
to verify the correctness of the encryption algorithm. [initalisationVector] is an
optional parameter that is only needed when the CBC blockMode is used. algorithm
should specify one of the scheme names returned by -cryptographic-algorithms.

• -meta-data <inputFile>

Provides meta data information for the specified inputFile.

• -mv-dump <inputFile> <frameNo>

Outputs the motion vectors for each macroblock of the specified frameNo of the
inputFile.

• -schemes

Lists the names and descriptions of the steganographic schemes.

• -transcode <inputFile> <outputFile

Takes in a video inputFile and uses the transcode mechanism (see Section 4.2.2)
to produce a facsimile outputFile.

• -unit-test

Runs all unit tests

• -vs-overview <inputFile>

Iterates the video stream of the specified file and outputs the type of each frame.

• -h <command>

Provides help on how to use the program. If a specific <command> is specified, help
on how to use that command will be outputted.

The command line tool will work using the standard input and standard output. All
input will be provided as command line arguments. The tool will use the return code (exit
status) to denote whether the operation succeeded or failed. We will adopt the widely used
convention of returning zero upon success and a non-zero value (by default 1) upon failure.

Transcoder

The process of transcoding a video file will require demultiplexing the original input file
to distinguish the audio data from the video data. The separate audio and video data can
then be processed and encoded (multiplexed) back into the output file.

To be able to understand how the transcoding process works, it is important to define
the meaning of the terms packet and frame. Typically a packet is a formatted unit of data;
in the context of video coding this still holds, however, a packet is the compressed data
that is taken directly from the input. A frame contains the decoded (uncompressed/raw)
audio or video data. In the case of audio the frame contains audio samples and for video
the frame will describe a picture. It is also important to note that depending upon the
codec used and the frame type, it is possible for a frame to span multiple packets of
data, and as such a frame cannot be decoded until all of the necessary packets have been
processed.

CHAPTER 4. DESIGN AND IMPLEMENTATION 31

Similarly, it is important to check the cache for frames once all packets have been read
from the input file. Although a frame can span multiple packets, it is also possible for a
packet to contain multiple frames. Without checking the cached frames at the end of a
video file these frames can be ignored.

Figures 4.1 illustrates the design of the transcode process and figure 4.2 shows how
packets from the input video are decoded and managed. The general transcoding process
shown in figure 4.1 is relatively straightforward. The decoding process (figure 4.2) is more
complex.

A Presentation Time Stamp (PTS) is used to synchronise the different streams of a
video file. Correctly setting the PTS is imperative as failing to do so will result in audio
and video streams that are out of synchronisation. Incorrect PTSs can also cause an
inflation of the video file size. The PTS of a video uses a 90 Khz clock relative to the start
of the video. During the decoding process the audio and video streams for the video file
are decoded according to a common time base. The common time base generally depends
on the decoder clock of one of the streams [Tek00].

Encoding and Decoding

The encoding and decoding of data will be performed by modifying the motion vectors
of a given video frame by means of a callback. This approach is straightforward in the
sense that the transcoding mechanism detailed in figures 4.1 and 4.2 can be used to either
transcode a video normally or embed the contents of an object file into the container.

We have opted for this very abstract approach as it will allow us to develop the different
aspects of the system independently, furthermore this approach will allow us to easily add
different steganographic schemes allowing the user to choose which scheme they would like
to use. Our callback will be implemented directly into the FFmpeg library.

Whilst the AVFrame5 struct does provide a motion val attribute we will only be able
to use this for the decoding of the message as motion val is set by the avcodec component
of FFmpeg. Therefore, avcodec will need to be adapted to handle a callback to our code.

The motion vector to modify and the frame number will be passed to our callback.
Out callback will then use this information to appropriately modify the motion vector that
is passed to it.

Figures 4.3 and 4.4 illustrates how our system can easily be expanded to include
different steganographic schemes. The Encoder is used to manage the object file (method
to be embedded) and the chosen steganographic scheme.

FirstMbXEncoder was the first steganographic scheme that was implemented by our
system. This scheme works by manipulating the X-component of the first motion vector
of each frame. Following this a Y-component variant of this scheme was also developed
(FirstMbYEncoder).

stegEncodeMv is our callback function that is called from inside the avcodec library,
this function will chain a callback to the relevant encoder modules, which is determ-
ined by getStegEncoderMode. The two steganographic schemes that are implemented
in the system thus far implement identical functions and attributes, however they differ
significantly in the implementation of their chainable callbacks (firstMbXEncodeMv and
firstMbYEncodeMv).

5http://ffmpeg.org/doxygen/trunk/structAVFrame.html

http://ffmpeg.org/doxygen/trunk/structAVFrame.html

CHAPTER 4. DESIGN AND IMPLEMENTATION 32

Figure 4.1: Transcode process flow chart

CHAPTER 4. DESIGN AND IMPLEMENTATION 33

Figure 4.2: Transcode process: decodePacket flow chart

CHAPTER 4. DESIGN AND IMPLEMENTATION 34

Figure 4.3: Encoder architecture overview

CHAPTER 4. DESIGN AND IMPLEMENTATION 35

Figure 4.4: Decoder architecture overview

Developing different steganographic encoding schemes is straightforward, as long as the
Encoder is aware of any additional coder modules. The decoding process is even simpler
as this is contained within a single Decoder (figure 4.4). The decoder works by iterating
over the packets of the specified video file and calling the relevant packet decoding method.

Steganalysis

As stated in Section 3.3.3, our solution will provide tools to aid the user in performing
manual steganalysis. Requirements 8, 9 and 17 all denote steganalysis features that should
be implemented in our application.

Requirements 9 and 17 will be achievable manually using the -mv-dump feature of the
command-line tool, therefore the GUI will simply use this command to allow the user to
easily compare neighbouring frames and frames from different videos.

There is no command or implementation for performing the functionality of require-
ment 8 in the command line tool, and this is a deliberate design choice. We have decided
to incorporate the playback and viewing of video frames in the GUI only, this avoids
the issue of trying to handle graphical tasks in the command line tool and contains all
graphical functions to the GUI.

AES Cryptosystem

The design of the AES cryptosystem module will be governed extensively by its formal
specification. Our design intention is to implement an AES Cryptosystem that is fully
compliant with the FIPS-197 standard [Nat01]. In Appendix B we discuss at length the
design and workings of FIPS-197 compliant AES.

CHAPTER 4. DESIGN AND IMPLEMENTATION 36

Figure 4.5: AES cryptosystem overview

In addition to AES we also discuss the modes of operation that can be used with
symmetric block ciphers such as AES. Our AES crytosystem will use the Cipher Block
Chaining (CBC) block mode (see Section B.3.2) to encrypt data. This has been chosen
over other methods, such as Electronic Code Book (ECB), because CBC adds a level of
randomisation that prevents patterns and trends exhibited in plaintext persisting in the
cipher text.

Block ciphers, by definition, encrypt data in blocks (or groups) of bits and as such, our
system will encrypt the steganographic message to be hidden into memory before starting
the embedding process. Similarly, when a message is extracted from a steganographic
container, the cipher text will be completely extracted before commencing decryption.

Figure 4.5 shows the UML design for our cryptosystem. The vast majority of the op-
erations in our cryptosystem design correspond to AES operations discussed in Appendix
B and the FIPS-197 specification as this implementation has been designed to be fully
compliant.

CHAPTER 4. DESIGN AND IMPLEMENTATION 37

4.2.3 Graphical User Interface

Programming Language

Having the GUI as a separate application comes with the advantage that it does not have to
be developed in the same programming language. We initially investigated using C for the
GUI (as well as the command line tool), however this proved to be impractical. Producing
a GUI in C that was capable of media playback would have relied on using several third-
party libraries (such as GTK+6 and SDL7). GTK+ is the only library that provided all of
the GUI components that our GUI needed and was compatible with Linux, Mac OS and
Windows. Unfortunately, after some further investigation and experimentation with these
libraries we found that the GTK+ library had very poor Mac OS integration. GTK+
was unable to interact with the Mac OS menu bar which caused serious problems as the
original designs relied on a menu bar to access the tools of the application.

Any good GUI should be multithreaded so that the GUI can be updated as operations
complete. With C there is no uniform cross-platform API for managing threads. Although
Unix based operating systems (such as Mac OS and Linux) use pthreads8, Windows uses an
entirely different threading API. Circumventing this issue would require us to use a third-
party library or develop our own mechanism for supporting multithreading cross-platform.
Given the native integration issues with GTK+ and the problem of multithreading we
deemed that C would be an inappropriate programming language for completing a GUI
capable of fulfilling our designs and requirements.

For the purpose of developing a GUI we considered using Java and Xuggler. Given the
results of our preliminary research (Section A.3) we had discarded these for the purpose
of video manipulation. However Xuggler and Java are sufficiently suited for GUI develop-
ment purposes. Java provides extensive GUI components such as the Swing9 and AWT10

packages which provide a far superior range of GUI tools than GTK+. Furthermore,
Xuggler could be used for managing the playback of media at the GUI level.

Design

The final implementation of the GUI was to be developed in Java, utilises the function-
ality of the command line tool. Communication between the GUI and the command line
tool is governed by the Process11 and ProcessBuilder12 classes. These classes allow a
Java application to execute external processes (using command line arguments), whilst
redirecting and managing the standard output and standard error streams.

Figures 4.6–4.14 and 4.16–4.18 show mockup designs for the interface. These mockups
illustrate the general structure and layout of each window and dialog. Figures 4.6–4.8
show the main interface. From this window the user can encode messages into a video
container, and decode a message hidden in a steganographic video. All other windows are
modal dialog tools that are accessible from the main interface, gemerally via the menu
(figure 4.8).

6GTK+ (GIMP Toolkit) – http://www.gtk.org/
7SDL (Simple DirectMedia Layer) – http://www.libsdl.org/
8https://computing.llnl.gov/tutorials/pthreads/
9http://docs.oracle.com/javase/7/docs/technotes/guides/swing/

10http://docs.oracle.com/javase/7/docs/technotes/guides/awt/
11http://docs.oracle.com/javase/6/docs/api/java/lang/Process.html
12http://docs.oracle.com/javase/6/docs/api/java/lang/ProcessBuilder.html

http://www.gtk.org/
http://www.libsdl.org/
https://computing.llnl.gov/tutorials/pthreads/
http://docs.oracle.com/javase/7/docs/technotes/guides/swing/
http://docs.oracle.com/javase/7/docs/technotes/guides/awt/
http://docs.oracle.com/javase/6/docs/api/java/lang/Process.html
http://docs.oracle.com/javase/6/docs/api/java/lang/ProcessBuilder.html

CHAPTER 4. DESIGN AND IMPLEMENTATION 38

Figure 4.6: GUI – Main Interface (Encode)

Figure 4.7: GUI – Main Interface (Decode)

CHAPTER 4. DESIGN AND IMPLEMENTATION 39

Figure 4.8: GUI – Main Interface – Menu Structure

Figure 4.9: GUI – Cryptography Test Vectors Dialog

CHAPTER 4. DESIGN AND IMPLEMENTATION 40

F
ig
u
re

4.
10
:
G
U
I
–
U
n
it
T
es
t
D
ia
lo
g

F
ig
u
re

4.
11
:
G
U
I
–
T
ra
n
sc
o
d
e
D
ia
lo
g

F
ig
u
re

4
.1
2
:
G
U
I
–
E
x
ec
u
te

D
ia
lo
g

F
ig
u
re

4.
13
:
G
U
I
–
M
et
a
D
at
a
D
ia
lo
g

F
ig
u
re

4.
14
:
G
U
I
–
A
b
o
u
t
D
ia
lo
g

F
ig
u
re

4
.1
5
:
G
U
I
–
P
ro
g
re
ss

D
ia
lo
g

CHAPTER 4. DESIGN AND IMPLEMENTATION 41

Figure 4.16: GUI – Video Player Dialog

Figure 4.17: GUI – Visual Comparison Dialog

Figure 4.18: GUI – Motion Vector Comparison

CHAPTER 4. DESIGN AND IMPLEMENTATION 42

4.3 Implementation

4.3.1 Overview

The implementation of this system was not straightforward, and numerous setbacks meant
that various components of our system were re-written and re-designed to overcome these
unforeseen hurdles.

The bulk of our system was implemented in C as a command line tool. A Java GUI
was also built to interface between the end user and our command line application. Imple-
menting our system so that it worked across Linux, Mac OS and Windows (requirement
21) was not as easy as we first thought, and as a result subtle adjustments had to be made
to our implementation to ensure that it would run on the required operating systems.

The final implementation of our solution used several libraries. The main command
line tool incorporates a modified version of the FFmpeg library, and in addition also links
with CUnit – a unit testing framework. Our Java GUI is implemented using Swing and
includes Xuggler.

4.3.2 Command Line Tool

The command line tool we implemented includes a modified version of the FFmpeg library,
and as such is written entirely in C. The command line tool contains five core components:

• Transcode Mechanism

• Steganographic Encoder

• Steganographic Decoder

• AES Cryptosystem

• Steganalysis Components

Transcode Mechanism

This component provides an underlying mechanism upon which the Steganographic En-
coder is built. The transcode mechanism takes an input video file, parses the packet data,
and outputs a new video file using the decoded packets.

The transcoder is built using functions of the avcodec and avformat libraries of FFm-
peg. The specified input file is first scanned for audio and video streams by iterating over
all of the media streams present in a file. When appropriate audio and video streams are
found their respective codecs are loaded into memory using the avcodec open2 function.
Loading a codec into memory creates an AVCodecContext that defines context specific
information about the codec (attributes such as: bit rate, sample rate, pixel format). This
context specific information is used to confirm the audio and video streams for the output
video file which are represented by an AVFormatContext. Once the streams have been
configured the header (which details the stream setup) has to be written to the output file
using avformat write header. With a prepared output file it is now possible to iterate
over the packets of data in the input file. A packet can contain multiple frames, so it is
important to check that no more frames can be decoded from the last packet once the file

CHAPTER 4. DESIGN AND IMPLEMENTATION 43

has been exhausted. Once all of the packets have been decoded the footer can be written
to the output file using av write trailer.

Decoding packets from the input file for the purpose of encoding in the output file had
its pitfalls. The frame that is produced by the decoder methods (avcodec decode video2

and avcodec decode audio4) cannot be parsed directly to the encoder without a certain
amount of preparation. Decoded frames do not contain PTSs as these specifically relate
to the video context. Before a decoded frame can be re-encoded it needs, at the very least,
each frame had to have a correct PTS, in addition to this the video frames contained meta
data that interfered with the encoding of the video.

Setting an accurate PTS and Decompressed Time Stamp (DTS) was crucial, and failure
to do so resulted in either no video image, or unsynchronised audio and video streams.
The resultant solution involved scaling a counter using av rescale q.

For some as yet unidentified reason, frames decoded by avcodec decode video2 could
not be parsed directly to the encoder, because they contained meta data that interfered
with the encoding. The meta data caused the image to be pixelated and the avcodec

library to throw various warnings. This problem was eventually solved by copying the raw
image data to a new AVFrame struct.

Steganographic Encoder

Our command line tool was originally developed so that it linked to the FFmpeg compon-
ent libraries (avcodec, avformat, etc.) for the transcoding process. This principle worked
well for ordinary transcoding, therefore, when we started to develop the encoding pro-
cess we looked at modifying the AVFrame that was parsed to the avcodec encode video2

method for coding into a compressed packet. From the FFmpeg documentation it ap-
peared that we needed to modify the motion val attribute of the AVFrame before calling
the encode method. Despite our endeavours the alterations we were making to motion val

were not being reflected in the coded packet. It eventually became apparent that we would
be unable to manipulate the motion vectors by changing the motion val attribute prior
to the avcodec encode video2 method.

After some further investigation and unsuccessful attempts to modify the compressed
packet, we concluded that the only solution would be to modify the FFmpeg source code.
Our efforts then shifted to dissecting the 850,000+ lines of code that comprise the FFmpeg
codebase. Eventually we deduced that by adjusting the behaviour of ff estimate p

frame motion in libavcodec/motion est.c we could manipulate the motion vectors of
macroblocks in P-Frames.

Now that we were able to modify the motion vectors of a frame we set about developing
a callback method for the steganographic encoder. This would require us not only to
modify the FFmpeg source code, but we would also have to include the source code as
part of our project. We therefore merged our work thus far with the FFmpeg source code.

At this point in time (April 2013), our steganographic encoder only modifies the X com-
ponent of motion vectors by means of a bit mask. A callback is made to the stegEncodeMx
of our main encoder.c file, which is responsible for chaining callbacks to appropriate meth-
ods depending on the chosen steganographic scheme. The stegEncodeMx method takes a
MpegEncContext and the integer value of the X component of the motion vector. From
the MpegEncContext we are able to derive attributes such as the frame number that will
allow us to embed the relevant bits.

CHAPTER 4. DESIGN AND IMPLEMENTATION 44

The approach mentioned above was not without its flaws, our tests and experiments
showed that only small messages of no more than 30 characters could be embedded,
and on average 50% of the bits that were embedded would flip causing an inaccurate
decoding of the hidden message. Further experimentation showed that different bit masks
provided little improvement and in some instances substantially decreased the number of
recoverable bits.

Eventually, we discovered the following issues, in order, that contributed to the erro-
neous embedding of data. Implementing our callback in the ff estimate p frame motion

method of libavcodec/motion est.c caused the covert data to be embedded before the
quantisation process (Section 2.3.2). As a result the range of motion vector values was
being further manipulated and altered, in some instances obliterating our changes. After
further exploring the FFmpeg source code we moved our callback from the ff estimate p

frame motionmethod of libavcodec/motion est.c to the encode mb internalmethod
of libavcodec/mpegvideo enc.c, as a result our motion vector manipulation occurs just
before the coding process.

After another round of analysis we realised that the values returned by our bit mask in
the decoder varied without any noticeable pattern. For instance if our embedding scheme
uses a bit mask of 7 to encode a “1” bit the we would expect a bit mask of 7 to return 7
or 0 depending on whether a “1” or “0” bit is encoded. We found that we would also get
a “4” or “3” randomly returned, and as these were no-zero values they were interpreted
as “encode a 1 bit”. This bit mask issue was attributed to the coding process of a motion
vector in which a right-shift operation is performed. This issue was thus combatted by
using a different decoding bit mask, we switched to using an encoding bit mask of 2 would
ensure that a decoding bit mask of 1 would extract the same bit value.

The refinements that we had applied to our original encoder architecture worked al-
most all the time. The final bit flipping issue was attributed to macroblocks that were
marked as having no motion vector. It appeared that were able to modify the motion
vectors of macroblocks that had been flagged for no motion vector coding. As a result,
we simply skipped any macroblocks marked as having no motion vector. By moving the
encoder callback, compensating for bit shifts and avoiding motion-vector-less frames our
transcoding mechanism was capable of embedding data in video. Before the transcoding
and embedding process begins the object file (containing the message to be embedded) is
encrypted and stored in the encoder. As the video is transcoded bits are read from the
encrypted buffer and are embedded according to the steganographic scheme.

Steganographic Decoder

The steganographic decoder is to an extent far simpler as the logic is contained with in
a single file. The decoder operates by decoding the video stream of a file and parsing
the relevant packets to a packet decoding function, the choice of packet decoding function
depends on the type of steganographic technique chosen.

The decoder only decodes data rom the video stream because the currently imple-
mented steganographic techniques only hide data in the video stream. Implementing a
decoder is quite a straightforward process as this only requires the implementation of a
single packet decoding function.

The decoding of a video packet is performed by parsing AVPackets to avcodec decode

video2 until a complete AVFrame has been returned. The AVFrame can then be processed
by looking at the pict type and motion val attributes.

CHAPTER 4. DESIGN AND IMPLEMENTATION 45

AES Cryptosystem

The AES cryptosystem component of our system was implemented as a generic module
capable of taking an input in the form of a string and encrypting or decrypting to an
output string. The cryptosystem was successfully implemented after only two iterations
– unit tests highlighted a minor bug in the implementation of the keyExpansion method.
The final implementation of the cryptosystem component conformed rigidly to the design
illustrated in figure 4.5 and the exact FIPS-197 specification.

The AES cryptosystem is utilised by both the steganographic encoder and decoder.
The steganographic encoder encrypts the entire object file (message to be embedded), be-
fore starting the transcoding and embedding process. The system behaves in this manner,
rather than as a “stream” that encrypts portions at a time, so that the steganographic
methods are not restricted to embedding in a linear fashion. This design choice was made
so that future embedding schemes would be able to randomly access the encrypted data.
Similarly, during the decoding process all of the encrypted data is extracted to memory
first, before being decrypted and stored on the filesystem.

Although the steganographic system that we have designed was not been built with
the purpose of streaming in mind, there are no known limitations of our design that would
prevent this system from being used with streaming video.

Some modifications would need to be made to our system in order for it to work in
a streaming context. A marker would need to be placed at the start and end of the
embedded data to indicate where in the stream the embedded data would start and end.
This would allow our system to extract information which has been embedded at some
location in the video stream.

A simple implementation of this system would use a plaintext marker to indicate the
start and end of the embedded message. The message, which could be encrypted, would
then reside in the video between the start and end markers. This method is limited
because it would allow an adversary to monitor a video stream for the plaintext markers.
By encrypting the markers this would prevent an adversary from being able to scan the
video file for these markers.

Steganalysis Components

Under Chapter 3 we defined two steganalysis tools as mandatory functional requirements:

• Requirement 8: playback of steganographic video file and original video file with the
ability to step through frames one at a time and compare the output side-by-side.

• Requirement 9: for a specified frame of the original and steganographic video file,
allow the corresponding motion vectors to be analysed and compared.

Requirement 8 is purely graphical in nature – allowing a specific frame from an original
and steganographic video to be displayed side-by-side. Given the graphical aspect of this
function it will be implemented in the GUI only – in Section 4.3.3 we discuss in some
detail why we have made this implementation decision. This functionality is implemented
using Xuggler as the library will allow us to extract video frames as an Image via the
IVideoPicture13 class. Frames from different video sources can be viewed side-by-side,

13http://www.xuggle.com/public/documentation/java/api/com/xuggle/xuggler/IVideoPicture.

html

http://www.xuggle.com/public/documentation/java/api/com/xuggle/xuggler/IVideoPicture.html
http://www.xuggle.com/public/documentation/java/api/com/xuggle/xuggler/IVideoPicture.html

CHAPTER 4. DESIGN AND IMPLEMENTATION 46

or, by altering the options of this feature it is possible to view two adjacent frames from
the same video source side-by-side.

Requirement 9 is not graphical in nature, therefore this has been implemented in the
command line tool and is accessible via the -mv-dump option. Parts of the decode logic
from the transcode tool have been recycled for this task. As with the transcode mechanism
a video stream is first located within the video file, once this is done the packets of the
video stream are decoded to AVFrames and two-dimensional motion vectors are calculated
based on the motion values coded in the motion val attribute. This feature then outputs
a tabulated matrix of motion vectors (one per macroblock) along with the frame number
and type.

In addition to the steganalysis features explicitly outlined in the requirement, another
steganalysis function has been implemented that provides an overview of video frames in
a stream by iterating over a video stream and outputting the frame number and type for
every frame. This is a very simple feature which involves outputting a frame counter and
the key frame and pict type attributes of AVFrame for each frame. This steganalysis
tool was developed primarily as an analytical tool to aid us in resolving the challenges
that we encountered in implementing the steganographic encoder, however, as this has
proven to be significantly useful we have included this as an additional steganalysis tool.
This feature is accessible via the -vs-overview option of the command line tool. An
extra dialog has also been added to the GUI to allow the user to access the video stream
overview from within the GUI application.

4.3.3 Graphical User Interface

Before implementing the GUI in Java (using Swing and Xuggler), we started to develop
a GUI in C using GTK+ and SDL as an all-in-one application (combining the GUI with
the steganography core). Unfortunately, the range of GUI libraries for C is very limited,
however, GTK+ was chosen as the GUI library because it was the only library that offered
the range of GUI components that our designs needed, and was compatible on all of the
operating systems specified in our requirements.

For displaying video frames our intention was to use the SDL library. Although SDL
is cross-platform compatible, we were unable to get our code to compile and execute
properly on Windows and Mac OS. Not only was SDL problematic, but GTK+ proved
to have poor integration for Mac OS. In our designs the menu bar is crucial for accessing
the different tools from the GUI. GTK+’s native implementation with the Mac OS menu
bar was buggy and did not work. We considered moving away from using menu bars in
our application but all of the alternative designs we produced were less intuitive than the
ones with menu bars. Instead of adapting the design of our GUI, we opted to change the
language and libraries that we would use to implement it, we opted instead to use Java
with the Swing package and the Xuggler library. Swing and Xuggler allowed us to produce
a cross platform GUI without the problems we experience when trying to do this in C
with GTK+ and SDL.

Furthermore, Java solved the problem of multi-threading which had been overlooked
in the original designs. In C, threading is not cross platform compatible. Windows has
its own threading API and Unix based systems (Linux and Mac OS) use POSIX threads
(more commonly known as pthreads). If we had continued using C we would have had to
either use a third-party library to manage threading, or implement our own cross-platform
threading API. By the point that multithreading needed to be addressed we had already

CHAPTER 4. DESIGN AND IMPLEMENTATION 47

switched the implementation of our GUI to Java. Java provides its own Thead14 class that
allows for intuitive and platform independent multithreading.

4.3.4 Cross Platform Compatibilities

Compatibility

Achieving cross platform compatibility for our command line tool was problematic, as the
different implementations of the gcc compiler vary on how strict they are. As a result,
this meant that our solution would often compile under Linux and Mac, but not under
Windows. Linking to other installed C libraries such as CUnit is a prime example of how
our Makefile would allow us to compile our code under Linux, but not any other operating
system. After some experimentation we found that linking libraries cross platform was
best achieved using pkg-config15. This tool provides a unified method for linking libraries
regardless of the operating system. pkg-config will detect and return the appropriate
library paths, include-paths and compiler flags for a given library.

In addition to the compile-time errors mentioned above, we experienced a substantial
setback with the transcode mechanism when we realised that the solution we developed
would only work on Linux – on Mac OS or Windows the transcoded video would contain
horrible distortion in the audio stream. A substantial amount of time was invested in
resolving this problem before a resolution was found. The sample format of the audio
stream was not being set correctly, and as a result the number of sample bits used in the
transcoded video was varying between operating systems.

Deployment

Significant consideration has also been given to how our solution would be deployed and
installed across the various platforms. Our solution is provided for download via our
projects website16. Naturally, different versions of the software exist depending on which
operating system you want to use the system on. C code has to be compiled differently de-
pending on the operating system and processor architecture. Therefore the key difference
between the different software versions is the binary executable of our command line tool.
The Java GUI we have implemented in compiled into a JAR, and this JAR is shipped
with the software irrespective of the operating system.

Windows

The Windows version of our software is downloadable as an executable installer that has
been created with Inno Setup17 – an open source installer for Windows programs. In
addition to this, our Java GUI is also wrapped in a Windows executable, so that our
software is as easy and intuitive to use as possible. Most Windows software is provided
as an executable and we felt that requiring the user to run a Jar to use our software
added an unnecessary level of complexity that could be negated by wrapping the Jar in an
executable. Furthermore, the executable wrapper can perform sanity checks and ensure

14http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.html
15http://www.freedesktop.org/wiki/Software/pkg-config
16http://www.steganosaur.us
17http://www.jrsoftware.org/isinfo.php

http://docs.oracle.com/javase/1.5.0/docs/api/java/lang/Thread.html
http://www.freedesktop.org/wiki/Software/pkg-config
http://www.steganosaur.us
http://www.jrsoftware.org/isinfo.php

that the user is running a compatible version of the Java Runtime Environment. The
wrapper executable of our GUI is provided using another open source tool – launch4j18

Mac

Windows is somewhat unusual in the sense that it prefers all programs to be installed in
a “Program Files” directory by a dedicated installer. With Mac OS however, applications
are not “installed” as such, they generally just reside in an application bundle. Therefore
our Java GUI Jar, and our command line executable are shipped for Mac OS inside an
application bundle that is created by Apple’s Jar Bundler19. Our application can be
launched simply by opening the application bundle.

It is worth noting, that the latest version of Mac OS (which our solution supports)
is provided with a compatible version of the Java Runtime Environment, therefore we do
not need to explicitly check for the correct version of the Java Runtime Environment.

Linux

Linux has some similarities with Mac OS in the sense that it does not need applications to
be installed to specific directories in its system, therefore our solution will be able to run
“as is” provided that the user has a compatible version of the Java Runtime Environment.

As there are various linux distributions we cannot guarantee that the user will have a
compatible version of the Java Runtime Environment installed, so we will need to check for
this, and if they do not we should tell them this. After analysing other Java applications
we have decided that our system will implement a bash script that checks for a compatible
version of the Java Runtime Environment before attempting to launch the Jar for the GUI.
The approach of using a bash script to launch the Jar is a technique that has been widely
adopted by a variety of applications.

4.4 Chapter Summary

In this chapter we have discussed the design and implementation of our system. We have
discussed at some length how the implementation of the system had to be adapted to
overcome several challenges.

Implementing our system took several months, and a substantial portion of this time
was focussed on the problems associated with modifying the motion vectors of a macro-
block. As a result this limited the amount of time that we were able to spend experimenting
and implementing different steganographic techniques.

Despite the unforeseen challenges that we have encountered whilst implementing our

18http://launch4j.sourceforge.net/
19https://developer.apple.com/library/mac/documentation/Java/Conceptual/

Java14Development/02-JavaDevTools/JavaDevTools.html

48

http://launch4j.sourceforge.net/
https://developer.apple.com/library/mac/documentation/Java/Conceptual/Java14Development/02-JavaDevTools/JavaDevTools.html
https://developer.apple.com/library/mac/documentation/Java/Conceptual/Java14Development/02-JavaDevTools/JavaDevTools.html

CHAPTER 5. TESTING 49

system, we have been able to address the vast majority of our requirements.

Chapter 5: Testing

In Section 3.4 we outlined our testing strategy which focused predominantly on using unit
testing to test the individual components that comprise our system. The entire system,
including aspects that cannot be unit tested have been evaluated via comprehensive sys-
tems testing. Careful consideration has been given to the design and implementation of
our system so that unit testing can be used as an effective testing strategy. The AES
cryptosystem, transcoder, encoder, decoder and steganalysis tools are all individual com-
ponents that can be tested independently before they are combined into a wider system.

Even though considerable care and consideration has been invested in producing a
testable and accurate system we cannot guarantee that it is free from bugs or errors for
two main reasons. Firstly, a video file can have many different configurations from stream
data (such as the video resolution, bit rate, etc.) right through to the properties of each
video frame (which are vast and variable). We therefore acknowledge that we have not
been able to test our system for all possible configurations and audio/video parameter
combinations. Secondly, the amount of systems and user acceptance testing that could
be performed was limited by the amount of remaining time for this project, therefore
preventing us from performing the extensive testing that we had originally planned for.

The process of testing our system has also been complicated by the fact that our
solution is designed to be cross-platform and as a result, each element of our testing
strategy should be performed on each operating system (Linux, Mac OS and Windows).

5.1 Unit Testing

In Chapter 4 we identified CUnit as our unit testing framework. Where possible, thorough
unit testing has been implemented; however, unit testing is unable to verify the wider
system, or the combination of component parts. Aspects of our system, such as the AES
cryptosystem are entirely unit testable. The cryptosystem implemented in our system
is entirely self-contained and strictly follows the FIPS-197 standard [Nat01], therefore
the entire cryptosystem module was subjected to unit testing to verify that it met the
specifications defined by this standard. NIST Special Publication 800-38A [Dwo01] defines
encryption and decryption test vectors for all of the block modes and key sizes that our
cryptosystem supports. These test vectors are therefore used to verify the performance
and accuracy of the overall cryptosystem.

Our unit tests are divided into suites, one for each unit testable subsystem (AES
cryptosystem, encoder and decoder). Unfortunately the transcode subsystem and aspects
of the encoder and decoder are not unit testable. The results of our unit testing are
summarised in figure 5.1.

CHAPTER 5. TESTING 50

Type Total Run Passed Failed Inactive

suites 4 4 n/a 0 0

tests 38 38 38 0 0

asserts 572 572 572 0 n/a

Figure 5.1: CUnit summary – unit testing results

5.2 System Testing

The command line tool and GUI for our system were iteratively developed in parallel,
which enabled us to exploit the graphical steganalysis tools of the GUI to help test the
encoding and decoding modules.

For the most part system testing of the command line tool involved running it with
different inputs and inspecting the output video file. For evaluating the process of encoding
data in a video file we were able to use MPlayer1 and our own steganalysis tools. MPlayer
was primarily used to verify the accuracy of our steganographic tools as it allows for the
analysis of motion vectors.

The suite of system tests outlined in tables 5.1 and 5.2 were used to test our finished
system.2

1http://www.mplayerhq.hu
2The system testing grid in tables 5.1 and 5.2 was carried out on Linux, Mac and Windows, and the

results were stored in separate test grids. As the results of the system testing were identical across all
operating systems we have only include one system test grid to save on space.

http://www.mplayerhq.hu

CHAPTER 5. TESTING 51

Test Expected Result Actual Result

Command Line Tool

Help system displays command
list

-h Lists all commands -h Lists all commands

Help system provides details of
how to use commands

running -h <command> returns
help instructions specific for
that command

running -h <command> returns
help instructions specific for
that command

Decode message using
first mb x method and no
password

Message successfully decoded
from video

Message successfully decoded
from video

Decode message using
first mb x method and cor-
rect password

Message successfully decoded
from video

Message successfully decoded
from video

Decode message using
first mb x method and in-
correct password

Message is unsuccessfully re-
trieved from video

Message is unsuccessfully re-
trieved from video

Decode message using
first mb y method and no
password

Message successfully decoded
from video

Message successfully decoded
from video

Decode message using
first mb y method and cor-
rect password

Message successfully decoded
from video

Message successfully decoded
from video

Decode message using
first mb y method and in-
correct password

Message is unsuccessfully re-
trieved from video

Message is unsuccessfully re-
trieved from video

Encode message using
first mb x method and a
password

Message is successfully embed-
ded

Message is successfully embed-
ded

Encode message using
first mb x method and no
password

Message is successfully embed-
ded

Message is successfully embed-
ded

-cryptographic-algorithms

command
Should output the names of
the supporting cryptographic
algorithms.

Should output the names of
the supporting cryptographic
algorithms.

Encryption and decryption test
vectors

The test vectors produced by
the -encrypt-test-vector and
-decrypt-test-vector match
the vectors stated in [Dwo01]

The test vectors produced by
the -encrypt-test-vector and
-decrypt-test-vector match
the vectors stated in [Dwo01]

Meta data accuracy Meta data outputted should
match the meta data derived us-
ing VLC media player

Meta data outputted should
match the meta data derived us-
ing VLC media player

Motion vector dump Output the frame type and an
accurate matrix of motion vec-
tors for each macroblock in a
frame

Output the frame type and an
accurate matrix of motion vec-
tors for each macroblock in a
frame

-schemes command Should output first mb x and
first mb y as the available en-
coding schemes.

Should output first mb x and
first mb y as the available en-
coding schemes.

Transcode Mechanism Should produce an output video
file capable of playback and
matches the quality of the input

Should produce an output video
file capable of playback and
matches the quality of the input

-unit-test command Running the -unit-test com-
mand should execute all of the
unit test suites

Running the -unit-test com-
mand should execute all of the
unit test suites

Video stream overview Running -vs-overview outputs
a summary of the frame type in-
formation for each frame in the
input video.

Running -vs-overview outputs
a summary of the frame type in-
formation for each frame in the
input video.

Table 5.1: System test grid – command line tool

CHAPTER 5. TESTING 52

Test Expected Result Actual Result

Graphical User Interface

Encode Encodes a video using the com-
mand line tool and reports the
progress via a progress bar

Encodes a video using the com-
mand line tool and reports the
progress via a progress bar

Decode Decodes a video using the com-
mand line tool and reports the
progress via a progress bar

Decodes a video using the com-
mand line tool and reports the
progress via a progress bar

Cryptography Test Vectors Parses parameters to the com-
mand line tool and displays the
resulting vector

Parses parameters to the com-
mand line tool and displays the
resulting vector

Unit Test Runs -unit-test command of
the command line tool and dis-
plays the output text

Runs -unit-test command of
the command line tool and dis-
plays the output text

Transcode Transcodes a video using the
command line tool and reports
the progress via a progress bar

Transcodes a video using the
command line tool and reports
the progress via a progress bar

Execute Runs the command line tool
with the specified parameters
and displays the output

Runs the command line tool
with the specified parameters
and displays the output

Video Player – Open File Plays the specified video file Plays the specified video file

Video Player – Play Synchronised playback of audio
and video streams

Synchronised playback of audio
and video streams

Video Player – Stop Stops playback of audio and
video streams

Stops playback of audio and
video streams

Meta Data Runs -meta-data command of
the command line tool and dis-
plays the output text

Runs -meta-data command of
the command line tool and dis-
plays the output text

Visual Comparison Display selected frames from
the specified video

Display selected frames from
the specified video

Motion Vector Comparison Using the command lien tool
display motion vectors for the
specified videos and frames and
colour the differences

Using the command lien tool
display motion vectors for the
specified videos and frames and
colour the differences

Video stream overview Runs -vs-overview command
of the command line tool and
displays the output text

Runs -vs-overview command
of the command line tool and
displays the output text

Check for updates (update re-
quired)

User is told that a new version
of the system is available and
asks them if they want to go to
the website to download.

User is told that a new version
of the system is available and
asks them if they want to go to
the website to download.

Check for updates (up-to-date) User is told that there system is
up-to-date

User is told that there system is
up-to-date

Table 5.2: System test grid – GUI

5.3 Video Testing

The video files produced by our system also required thorough testing. It is important
that they are valid video files that are capable of playback. Videoplay was evaluated
using various third-party media players, including VLC3, Windows Media Player4 and
QuickTime5. Our tests showed that different media players can have different levels of

3http://www.videolan.org/vlc/
4http://windows.microsoft.com/en-GB/windows/download-windows-media-player
5http://www.apple.com/uk/quicktime/

http://www.videolan.org/vlc/
http://windows.microsoft.com/en-GB/windows/download-windows-media-player
http://www.apple.com/uk/quicktime/

tolerance for faults or imperfections in a media file, it is for this reason that we have tested
our video across a variety of media players, and on different operating systems.

We have tested our video files by allowing complete playback of the media from start
to finish – this tests normal sequential decoding. Candidate video files are then further
tested by seeking to random positions in the video file – this tests non-sequential decoding.
If the keyframe index of a video file is incomplete, inaccurate or corrupt this will disrupt
the process of seeking to a position in the stream, because you can only directly seek
to keyframes (I-frames). The exact seek position is achieved by seeking to the closest
I-frame and then interpolating any P- and B- frames between the I-frame location and the
requested seek position.

Attention is also afforded to the synchronisation of audio and video, and the file size.
It goes without saying that the streams of our output file should synchronise in the same
fashion of those in the input file. From our experience we have also learned that a signi-
ficantly inflated output file size can be a first indicator of erroneous video coding.

5.4 User Acceptance Testing

During this project we were asked to provide a guest lecture for a range of students and
researchers within the Department of Computer Science; at this lecture we discussed video
steganography and our system at length, as well as providing live demonstrations of our
work. In addition to this, we also made our software available to the audience for further
user acceptance testing and feedback.

During the lecture we surveyed 12 members of the audience. According to their feed-
back our system was clean, easy and intuitive to use. The only suggestion that we received
was that “a help section may come in handy”. Although our command line tool does
provide help functionality, our GUI tool does not. Unfortunately due to time constraints
we were unable to act on this suggestion.

We also attempted to determine whether the audience was able to detect a video
that had data hidden in it. We showed them three identical videos simultaneously, one
of which had data embedded using one of our techniques. Although the results of the
survey are interesting we believe them to be inconclusive. Our survey showed that 50%
correctly identified the video with hidden data and 50% said that none of the videos
contained hidden data. Unfortunately we did not collect the survey results until the end
of the lecture, but we did reveal the answer during the talks. As a result, some of the
participants may have written down the answer once we told them. It seems unusual
that all of the participants would either correctly identify the video, or else indicate that
nothing was embedded at all.

5.5 Chapter Summary

We have used a variety of testing and evaluation techniques to verify the performance and
accuracy of the software solution that we have produced. We have combined unit testing,
system testing and user acceptance testing to produce a thorough and comprehensive
testing strategy. The user acceptance testing that we have carried out suggested that the
solution we have produced is user friendly, but the feedback relating to the subtlety of
the embedding technique seems to be somewhat inconclusive or unreliable. The testing

53

CHAPTER 6. EVALUATION 54

that we have carried out indicates that our system can accurately perform to the level of
functionality that we have indicated.

Chapter 6: Evaluation

During the course of this project we have developed a video steganography tool that uses
modern motion vector techniques to embed and extract data in H.264 (and MPEG4) which
is the most commonly used online video format. The system that we have produced has
proven to be successful in hiding data in video files by using motion vector manipulation.
Although time constraints prevented us from exploring more steganographic schemes,
our project concludes at the point where the further development of these techniques is
possible.

6.1 Deliverables and Implementation

Throughout the course of this project we have implemented a steganographic system that
is capable of hiding data in H.264 and MPEG4 video files using two different methods
of embedding. Our tools are capable of taking an object file (of any data format) and
encrypting (with 256-bit AES encryption) and embedding the data in a video so that the
resultant video is indistinguishable from the original container file and is capable of normal
video playback.

Several steganalysis tools were also developed that proved useful in evaluating and
testing our system. These tools allow us to analyse how we embed the data and the visual
similarities and differences between video frames.

In our requirements and analysis we categoried the requirements of our system as being
“mandatory”, “desirable” or “optional”. We have successfully implemented all of our
mandatory requirements and most of the desirable requirements. Due to time constraints
we were not able to complete the implementation of the desirable requirements and only
a few of the optional requirements have been implemented.

At the start of this project the intention was to research and develop numerous schemes
for embedding and extracting data covertly from video files. Our original goal was heavily
ambitious and did not fully recognise the complexities associated with manipulating video
data. Furthermore, out video manipulations had to be lossless and recoverable. Although
we have not managed to implement as many steganographic algorithms as we had originally
intended, we have during the lifecycle of this project developed two methods for embedding
and extracting data from a video file.

Our original plan (as defined in our Survey and Analysis document) detailed a rigid
six-iteration steganography phase in which a new steganographic scheme would be imple-
mented and analysed for each iteration. This was unbelievably optimistic, although at the
time we believed significant contingency time was built into all of the main tasks (such as
transcoding, cryptography, etc.). With hindsight it is quite clear that we did not prop-
erly estimate and forecast the challenges that we would encounter on this project and the
lengthy process involved in resolving these. Developing the system so that it was capable

CHAPTER 6. EVALUATION 55

of hiding data was undoubtably one of the most time consuming aspects of the system,
that took far longer than we originally anticipated. Having undertaken this project it
would appear that video steganography is a highly specialised field. Before embarking on
this project we had no prior knowledge of steganography or video coding/processing which
at points caused steep and dramatic learning curves.

Our final solution uses motion vector based approaches that are capable of hiding data
in H.264 and MPEG4 video files. As part of the testing and evaluation of our system we
have made binary executables of our software available for public download. To the best
of our knowledge, our tool is the only video steganography system capable of hiding data
in this manner that has been made publicly available via the internet.

6.2 Results and Findings

Our main goal at the outset was to develop and research techniques for embedding data
using motion vector based techniques. For the schemes that we have developed this has
proven to be a success, although we have noted a couple of limitations with our work. At
the start of this project we believed that it would be possible to embed data in any motion
vector of a P- and B- frame. For the most part this is true, however it is possible for a
macroblock to be coded as having no motion vector. This was not a concept that we were
familiar with. Coding a macroblock with no motion vector is different to coding a motion
vector with a resultant magnitude of zero.

From an implementation stance, FFmpeg would use the mb type attribute of the
AVFrame struct to indicate the type of macroblock (and subsequently whether a motion
vector is coded or not). Prior to discovering this our system would modify the motion val

attribute of AVFrame, but, then the coding process of FFmpeg would ignore the motion
vector when the macroblock type indicated that this was appropriate. We mitigated this
problem by inspecting the type of each macroblock prior to encoding.

Another limitation of our system is the inability to determine steganographic capacity
prior to encoding. Motion vectors describe the spatial translation of a block of pixels
between frames, whence modifying the motion vectors in one frame will have an impact
on other motion vectors. This relationship means that when coding/manipulating one
macroblock, another macroblock may be changed as a result of this action so that it
encodes no motion vector. This type of action causes the number of encodable macroblocks
to change depending on the object that is to be embedded.

The number of available macroblocks can also vary due to key frame positions or GOP
sizes. Whilst it is good practice to have I-frames at regular intervals1, it is possible for a
video to have irregular and inconsistent GOP sizes. During the coding process our system
will default to a GOP size of 12 if a regular GOP size cannot be detected. As a result of
this action B- or P- frames will change to I-frames which have no macroblocks, therefore
drastically changing the number of available macroblocks. Whilst we could change our
system to preserve the I-frame position of the input video a regular GOP size provides
better error correction.

For these reasons it is not possible to detect or the steganographic capacity of a video.
If our system is unsuccessful in embedding the entire object, we inform the user of this,
and the size of data that was successfully embedded. We indicate to the end user that
this is an approximation of the steganographic capacity of the video.

1GOP sizes of 12 occur frequently across video formats.

CHAPTER 6. EVALUATION 56

Figure 6.1: Input Video – frame 600 Figure 6.2: Inverted motion vectors –
frame 600

Figure 6.3: With “First Macroblock X”
technique applied – frame 600

Figure 6.4: With “First Macroblock Y”
technique applied – frame 600

Our system is capable of manipulating motion vector values and hiding data using one
of two methods:

• First Macroblock X
This method hides data by modifying the LSB of the X-component of the motion
vector in the first macroblock.

• First Macroblock Y
This method hides data by modifying the LSB of the Y-component of the motion
vector in the first macroblock.

In figures 6.1 and 6.2 we illustrate how our system is capable of modifying motion
vector values quite significantly. In this example the motion vectors for every macroblock
are inverted. This illustrates how motion vector modification can produce significant and
noticeable artefacts if the manipulation is not performed with care.

Figures 6.3 and 6.4 show the same video frame (frame 600), this time with data embed-
ded in the frame using the different techniques. In both instance the first macroblock of
the frame (top-left corner) is the area in which the manipulation is occurring. We believe
that this technique is subtle, although the manipulation occurs in the same corner of the
frame, we believe that the LSB portion is small enough that it does not cause obvious or
noticeable artefacts.

In an attempt to verify this we conducted a survey with 12 people during a lecture. We
showed them three identical videos simultaneously one of which had data embedded using
the “First Macroblock X” technique. Although the results of the survey are interesting
we believe them to be inconclusive, as explained in Section 5.4.

From a pure steganalysis point of view, it is not easy to spot changes that have been
made to the motion vectors of the frame. In Figure 6.5 we analyse the motion vector values
in frame 600 of the original and “First Macroblock X” videos. It is worth noting that in

CHAPTER 6. EVALUATION 57

Figure 6.5: Motion vector comparison of original and “First Macroblock Y” video – frame
600

this frame the X-component is not modified, but nonetheless there is significant fluctuation
between the motion vector values shown for Video A and Video B. This fluctuation is
caused by the lossy nature of H.264/MPEG4 video coding, which means the simple process
of transcoding a video will cause motion vector values to fluctuate. These results and
observations also hold for frames where the X-component has been modified

The original goal of this project was to experiment with different techniques for hiding
information in video files. This project has succeeded in implementing two such strategies.
Although time constraints meant that we could not further explore other schemes, and were
unable to implement features such as an independent steganographic and cryptographic
keys, the overall goal of hiding data by manipulating motion vectors proved to be a success.

6.3 Further Work

With the luxury of additional time this project could be expanded to explore other, more
complex, steganographic schemes. Now that the concept of hiding information in the
motion vectors of an H.264/MPEG4 video has been proven, we could experiment with
methods that have high steganographic capacity or are difficult to detect, and those which
achieve a middle ground between the two criteria. The steganographic schemes that have
been implemented thus far only modify the motion vectors of a single macroblock per
frame. We believe that with a small amount of additional work we could produce a
system that is capable of embedding in all the macroblocks of a frame, whilst producing
minimal distortion to the original image.

The concept works by hiding information in a frame just before an I-frame. This frame
will be shown so briefly before the I-frame is displayed that any distortion should not be
easily noticeable. It is hoped that this proposed technique will be less noticeable than those

CHAPTER 6. EVALUATION 58

Figure 6.6: Embedding in every macro-
block of every frame. Frame 606 (pre-
cedes I-frame).

Figure 6.7: Embedding in every macro-
block of every frame. Frame 606 (I-
frame).

Figure 6.8: Embedding in every macro-
block of every frame. Frame 607 (post
I-frame).

we have implemented because we only modify a single frame in each GOP, whereas in our
implemented techniques we are modifying the same macroblock in consecutive frames.

We conducted an experiment where we attempted to manipulate the LSB of every
macroblock in every frame. This proved to be very unsuccessful because the changes to
the motion vectors aggregated within a GOP. In our experiment we used a GOP size of 12
frames. Figure 6.6 shows the frame immediately before an I-frame (figure 6.7), and figure
6.8 shows the frame immediately after the I-frame. Figures 6.6 and 6.8 both have data
hidden in them, but because figure 6.6 is the final frame in its GOP the manipulations
made to the motion vectors in the preceding frames have influenced those that follow.
Frame 6.8 shows that it is possible to modify all the macroblocks in a frame with minimal
distortion.

One technique that we would therefore propose as further work would involve testing
the proposal of embedding data in the motion vectors of frames that immediately precede
an I-frame.

There are numerous options for further research into the use of video steganography
techniques and software. Research could be continued into the motion vector approach
to determine whether it is possible to generalise our approach for all motion vector based
codecs.

Unfortunately, due to time constraints, we were unable to develop a scheme capable of
embedding in both audio and video. Although this was one of our lower priority require-
ments, this is an area of steganography that is yet to be explored, and how significantly
this can impact steganographic capacity. To the best of our knowledge there is no mention
of a steganography technique in the literature that is capable of embedding in both the
audio and video stream of files.

6.4 Chapter Summary

From the outset we believed that this project would be complicated and challenging to
undertake, but even with this in mind we underestimated quite how difficult this would
be. As a result a large portion of time was consumed developing a transcoding mechanism
and an appropriate process for manipulating motion vectors. Despite the setbacks that we
have encountered we have been able to produce a system that achieves most of the goals
that we set out to achieve. The requirements that we have not implemented have been
unattainable due to time constraints as opposed to implausibility.

Chapter 7: Conclusion

From the outset our project has been undertaken to explore the possibility of embedding
data using motion vector techniques in appropriate file formats.

Whilst undertaking the literature survey, we also started to undergo preliminary re-
search into image and audio steganography techniques and video manipulation (see Ap-
pendix A). The knowledge that we gained from this preliminary research helped us to
understand how steganographic techniques work with compressed media formats and the
difficulties of manipulating video data.

The literature survey revealed numerous video steganography sources, but most of
these sources were concerned with slightly older DCT based techniques. Very few papers
discussed steganographic techniques that were applicable to modern video file formats such
as H.264. In all instances, the literature described how to apply the technique at a very
high level, seeming to work on the understanding that you knew how video coding works
and how to develop a system capable of performing video manipulations. As a result
we had to teach ourselves how to built a video transcoder that was capable of making
modifications to video frame data before it was coded into a video packet.

Before we were able to achieve this goal we had several false starts. We first attempted
to use Java and Xuggler to hide data in video. However, we found that Xuggler would
not allow us to perform the low level operations that were needed in order to change the
motion vectors of the video file.

Our next attempt involved switching to using C and FFmpeg. Our original C code
used FFmpeg as a linked library and we attempted to modify the AVFrames motion vector
attributes before they were passed to the encoder methods, but unfortunately it transpired
that we would need to modify the behaviour of the FFmpeg encoder in order to apply the
manipulations we needed, As a result, our final solution incorporates a modified version
of the FFmpeg source code.

Whilst we were trying to ascertain a transcode mechanism that would allow us to
modify the motion vectors of a video, our designs and implementation were being it-
eratively updated. Each iteration and alteration to the original design was a result of
acquiring more knowledge about how video coding and video manipulation works. Whilst
there is information in the literature on video codecs and how they work, there is very
little information on how to build transcoding systems.

Even though FFmpeg is the most comprehensive video manipulation library current

59

CHAPTER 7. CONCLUSION 60

under active development, there are almost no examples of how to use the API afforded
by the library. Only a handful of examples are provided in the API documentation, but
even though a few of these examples contained useful snippets of code that showed us how
to use various function of the API, we had to develop (through a lot of experimentation)
our own code completely from scratch.

Attempting to learn how to use a vast and complex codebase such as FFmpeg, which is
written in C – a language of which we had no prior experience – was certainly challenging.
Undoubtably the learning curve that was introduced here detracted from the time that we
could have spent working on steganographic techniques. According to the original plan
in our survey and analysis we would have undertaken a six-iteration steganography and
steganalysis phase in which a single steganographic scheme would have been produced
per iteration. This time frame proved to be completely unrealistic, but nonetheless we
conclude our project with two steganographic schemes that are capable of hiding data in
H.264 and MPEG4 video files.

We have successfully developed a cross-platform system that is capable of hiding data
in H.264 and MPEG4 video files. Although due to time constraints we were unable
to implement all of our desirable and optional requirements, we feel that with a small
amount of further work we would be able to address these issues. Our exploration of the
processes involved in manipulating video data has prompted numerous ideas for different
steganographic schemes and there is a lot of potential for developing this system further
and expanding this research into the field of video steganography.

Bibliography

[AFJK+10] A. K. Al-Frajat, H. A. Jalab, Z. M. Kasirun, A. A. Zaiden, and B. B. Zaiden.
Hiding Data in Video File: An Overview. Journal of Applied Sciences,
10:1644–1649, 2010.

[Aly11] H. A. Aly. Data Hiding in Motion Vectors of Compressed Video Based on
Their Associated Prediction Error. Information Forensics and Security, IEEE
Transactions on, 6(1):14–18, March 2011.

[And96] R. Anderson. Stretching the Limits of Steganography. IEEE Journal of
Selected Areas in Communications, 16:474–481, 1996.

[AT90] C. M. Adams and S. E. Tavares. The structured design of cryptographically
good s-boxes. Journal of Cryptology, 3(1):27–42, 1990.

[AWSZ05] I. Ahmad, X. Wei, Y. Sun, and Y. Zhang. Video transcoding: An overview
of various techniques and research issues. IEEE Transactions on Multimedia,
7(5):793–804, October 2005.

[Bac40] F. Bacon. Of the advancement and proficiencie of learning, or, The partitions
of sciences. Leon Lichfield, Oxford, for R. Young and E. Forest, 1640.

[BDBG08] S. Braci, C. Delpha, R. Boyer, and G. L. Guelvouit. Informed Stego-schemes
in Active Warden Context: Tradeoff between Undetectability, Capacity and
Resistance, 2008.

[BF11] A. A. Bruen and M. A. Forcinito. Cryptography, Information Theory, and
Error-Correction: A Handbook for the 21st Century. Wiley, 2011.

[BK04] U. Budhia and D. Kundur. Digital Video Steganalysis Exploiting Collusion
Sensitivity. In Edward M. Carapezza, editor, Proc. SPIE Sensors, Command,
Control, Communications, and Intelligence (C3I) Technologies for Homeland
Security and Homeland Defense, volume 5403, pages 210–221, Orlando, Flor-
ida, 2004.

[BKZ06] U. Budhia, D. Kundur, and T. Zourntos. Digital Video Steganalysis Exploit-
ing Statistical Visibility in the Temporal Domain. IEEE Transactions on
Information Forensics and Security, Vol. 1, No. 4, 1(4):502–516, 2006.

[Cas10] L. Case. All about video codecs and containers. http://www.pcworld.com/
article/213612/all_about_video_codecs_and_containers.html, 2010.
Date Accessed: 9 April 2013.

[CM99] J. J. Chae and Manjunath. Data hiding in Video. In 6th IEEE International
Conference on Image Processing (ICIP’99), volume 1, pages 311–315, October
1999.

61

http://www.pcworld.com/article/213612/all_about_video_codecs_and_containers.html
http://www.pcworld.com/article/213612/all_about_video_codecs_and_containers.html

BIBLIOGRAPHY 62

[Coc73] C. C. Cocks. A note on non-secure encryption, 1973.

[Col03] E. Cole. Hiding in Plain Sight: Steganography and the Art of Covert Com-
munication. Wiley Publishing, Inc., 2003.

[Con08] Conceiva Pty. Ltd. White paper: Download managers – a better download-
ing experience. http://www.conceiva.com/products/downloadstudio/

WhitePaper-DownloadManager.pdf, 2008. Accessed: 9 April 2013.

[Cra96] S. Craver. On Public-key Steganography in the Presence of an Active
Warden. In Information Hiding, Second International Workshop, pages 355–
368. Springer, 1996.

[CZF12] Y. Cao, X. Zhao, and D. Feng. Video Steganalysis Exploiting Motion Vector
Reversion-Based Features. IEEE Signal Processing Letters, 19:35–38, 2012.

[DaC] DaCast. Streaming service for flash, rtmp, h.264 & vp6. http://www.dacast.
com/flash-rtmp-h264-vp6-streaming.html. Date Accessed: 9 April 2013.

[Dav97] D. Davies. A brief history of cryptography. Information Security Technical
Report, 2(2):14–17, 1997.

[DH76] W. Diffie and M. E. Hellman. New Directions in Cryptography. IEEE Trans-
actions on Information Theory, IT-22(6):644–654, 1976.

[DHC10] R. C. Dodge Jr., T. Holz, and A. Chuvakin. Advanced attacker detection and
understanding with emerging honeynet technologies. In Wiley Handbook of
Science and Technology for Homeland Security, page 984. John Wiley & Sons,
Inc., 2010.

[Dip08] B. Dipert. Online video content distribution: Sony’s playstation 3 enters
the ring (albeit with a sound-hampered hand tied behind its back). http:

//www.edn.com/electronics-blogs/brians-brain/4305143/Online-

Video-Content-Distribution-Sony-s-PlayStation-3-Enters-The-

Ring-Albeit-With-A-Sound-Hampered-Hand-Tied-Behind-Its-Back-,
2008. Date Accessed: 9 April 2013.

[DK07] H. Delfs and H. Knebl. Introduction to Cryptography: Principles and Applic-
ations. Springer, 2007.

[DR02] J. Daemen and V. Rijmen. The Design of Rijndael. Springer-Verlag New
York, Inc., Secaucus, NJ, USA, 2002.

[Dwo01] M. Dworkin. Nist special publication 800-38a: Recommendation for
block cipher modes of operation. http://csrc.nist.gov/publications/

nistpubs/800-38a/sp800-38a.pdf, 2001. Date Accessed: 9 April 2013.

[EKZZ09] M. E. Eltahir, L. M. Kiah, B. B. Zaidan, and A. A. Zaidan. High Rate
Video Streaming Steganography. In Proceedings of the 2009 International
Conference on Future Computer and Communication, ICFCC ’09, pages 672–
675, Washington, DC, USA, 2009. IEEE Computer Society.

http://www.conceiva.com/products/downloadstudio/WhitePaper-DownloadManager.pdf
http://www.conceiva.com/products/downloadstudio/WhitePaper-DownloadManager.pdf
http://www.dacast.com/flash-rtmp-h264-vp6-streaming.html
http://www.dacast.com/flash-rtmp-h264-vp6-streaming.html
http://www.edn.com/electronics-blogs/brians-brain/4305143/Online-Video-Content-Distribution-Sony-s-PlayStation-3-Enters-The-Ring-Albeit-With-A-Sound-Hampered-Hand-Tied-Behind-Its-Back-
http://www.edn.com/electronics-blogs/brians-brain/4305143/Online-Video-Content-Distribution-Sony-s-PlayStation-3-Enters-The-Ring-Albeit-With-A-Sound-Hampered-Hand-Tied-Behind-Its-Back-
http://www.edn.com/electronics-blogs/brians-brain/4305143/Online-Video-Content-Distribution-Sony-s-PlayStation-3-Enters-The-Ring-Albeit-With-A-Sound-Hampered-Hand-Tied-Behind-Its-Back-
http://www.edn.com/electronics-blogs/brians-brain/4305143/Online-Video-Content-Distribution-Sony-s-PlayStation-3-Enters-The-Ring-Albeit-With-A-Sound-Hampered-Hand-Tied-Behind-Its-Back-
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf
http://csrc.nist.gov/publications/nistpubs/800-38a/sp800-38a.pdf

BIBLIOGRAPHY 63

[Ell70] J. H. Ellis. The possibility of non-secret digital encryption. Government Com-
munication Headquarters (GCHQ), 1970. http://cryptocellar.web.cern.
ch/cryptocellar/cesg/possnse.pdf. Accessed: 9 April 2013.

[FC06] D. Fang and L. Chang. Data hiding for digital video with phase of motion
vector. In Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE
International Symposium on, pages 1422–1425, May 2006.

[Fei73] H. Feistel. Cryptography and computer privacy. Scientific American,
228(5):15–23, May 1973.

[FGS05] J. Fridrich, M. Goljan, and D. Soukal. Perturbed quantization steganography.
Multimedia Systems, 11(2):98–107, 2005.

[FNS75] H. Feistel, W. A. Notz, and J. L. Smith. Some cryptographic techniques
for machine-to-machine data communications. Proceedings of the IEEE,
63(11):1545–1554, November 1975.

[Fri10] J. Fridrich. Steganography in Digital Media: Principles, Algorithms and Ap-
plications. Cambridge University Press, 2010.

[FSK10] N. Ferguson, B. Schneier, and T. Kohno. Cryptography engineering: Design
principles and practical applications, 2010.

[GARR05] B. Girod, A. M. Aaron, S. Rane, and D. Rebollo-Monedero. Distributed video
coding. Proceedings of the IEEE, 93(1):71–83, January 2005.

[Her96] Herodotus. The Histories. Penguin Books, 1996.

[HLvR+00] A. Hanjalic, G. C. Langelaar, P. M. B. van Roosmalen, J. Biemond, and
R. L. Lagendijk. Image and Video Databases: Restoration, Watermarking
and Retrieval. Advances in Image Communication. Elsevier Science, 2000.

[IM04] IBM and Microsoft. Multimedia Programming Interface and Data Specific-
ations 1.0. http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/

WAVE/Docs/riffmci.pdf, 2004. Accessed: 9 April 2013.

[JDJ03] N. F. Johnson, Z. Duric, and S. Jajodia. Information Hiding: Steganography
and Watermarking - Attacks and Countermeasures (Advances in Information
Security). Kluwer Academic Publishers, 2003.

[JKH07] J. S. Jainsky, D. Kundur, and R. Halverson. Towards digital video steganalysis
using asymptotic memoryless detection. In Proceedings for the 9th workshop
on multimedia & security, pages 161–168. ACM, 2007.

[JZZ09] H. A. Jalab, A. A. Zaidan, and B. B. Zaidan. Frame Selected Approach for
Hiding Data within MPEG Video Using Bit Plane Complexity Segmentation.
Journal of Computing, 1(1):108–113, 2009.

[Kah67] D. Kahn. The codebreakers: the story of secret writing. Macmillan, 1967.

[KD79] J. B. Kam and G. I. Davida. Structured design of substitution-permutation
encryption networks. Computers, IEEE Transactions on Computers, C-
28(10):747–753, October 1979.

http://cryptocellar.web.cern.ch/cryptocellar/cesg/possnse.pdf
http://cryptocellar.web.cern.ch/cryptocellar/cesg/possnse.pdf
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf

BIBLIOGRAPHY 64

[KDR06] Y. Kim, Z. Duric, and D. Richards. Modified Matrix Encoding Technique
for Minimal Distortion Steganography. In Information Hiding, volume 4437,
pages 314–327. Springer, 2006.

[KK10] V. Kumar and D. Kumar. Performance evaluation of DWT based image
steganography. In IEEE International Advance Computing Conference, pages
223–238, 2010.

[KP03] T. J. Kozubowski and K. Podgórski. Log-Laplace distributions. Internat.
Math. J., 3:467–495, 2003.

[Le 91] D. Le Gall. Mpeg: a video compression standard for multimedia applications.
Commun. ACM, 34(4):46–58, April 1991.

[LLLL06] B. Liu, F. Liu, B. Lu, and X. Luo. Real-time steganography in compressed
video. In Proceedings of the 2006 international conference on Multimedia
Content Representation, Classification and Security, MRCS’06, pages 43–48,
Berlin, Heidelberg, 2006. Springer-Verlag.

[Mar03] K. Martins. How video sharing has become more popular with adults and
adolescents alike. http://cs36.com/video-sharing/, 2003. Date Accessed:
9 April 2013.

[Mit00] S. K. Mitra. Digital Signal Processing: A Computer-Based Approach.
McGraw-Hill Inc., 2000.

[MOR+09] A. J. Mozo, M. E. Obien, C. J. Rigor, D. F. Rayel, K. Chua, and G. Tan-
gonan. Video steganography using Flash Video (FLV). In Instrumentation
and Measurement Technology Conference, 2009. I2MTC ’09. IEEE, pages
822–827, May 2009.

[MOVR96] A. J. Menezes, P. C. Van Oorschot, S. A. Vanstone, and R. L. Rivest. Hand-
book of applied cryptography, 1996.

[Muk11] J. Mukhopadhyay. Image and Video Processing in the Compressed Domain.
CRC Press, 2011.

[Nat01] National Institute of Science and Technology. Federal information processing
standards publication 197. http://csrc.nist.gov/publications/fips/

fips197/fips-197.pdf, 2001. Accessed: 9 April 2013.

[NFNK04] H. Noda, T. Furuta, M. Niimi, and E. Kawaguchi. Application of BPCS
steganography to wavelet compressed video. In Image Processing, 2004. ICIP
’04. 2004 International Conference on, volume 4, pages 2147–2150, October
2004.

[O’C95] L. O’Connor. On the distribution of characteristics in bijective mappings.
Journal of Cryptology, 8(2):67–86, 1995.

[ÓDB96] J. J. K. Ó Ruanaidh, W. J. Dowling, and F. M. Boland. Watermarking digital
images for copyright protection. Vision, Image and Signal Processing, IEE
Proceedings, 143(4):250–256, August 1996.

http://cs36.com/video-sharing/
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf
http://csrc.nist.gov/publications/fips/fips197/fips-197.pdf

BIBLIOGRAPHY 65

[PDB09] V. Pankajakshan, G. Doerr, and P. K. Bora. Detection of motion-incoherent
components in video streams. IEEE Transactions on Information Forensics
and Security, 4:49–58, 2009.

[Pro01] N. Provos. Defending Against Statistical Steganalysis. In 10th USENIX Se-
curity Symposium, pages 323–335, 2001.

[PS12] B. Prabhakaran and D. Shanthi. A New Cryptic Steganographic Approach
using Video Steganography. International Journal of Computer Applications,
49(7):19–23, 2012.

[Rab04] K. Rabah. Steganography – The Art of Hiding Data. Information Technology
Journal, 3(3), 2004.

[Ric08] I. E. G. Richardson. H.264 and MPEG-4 Video Compression: Video Coding
for Next-Generation Multimedia. John Wiley & Songs, 2008.

[Ros08] A. Rose. BBC iPlayer Goes H.264. http://www.bbc.co.uk/blogs/

bbcinternet/2008/08/bbc_iplayer_goes_h264.html, 2008. Date Ac-
cessed: 9 April 2013.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtaining digital sig-
natures and public-key cryptosystems. Communications of the ACM, 21:120–
126, 1978.

[SA10] S. Singh and G. Agarwal. Hiding image to video: A new approach of LSB
replacement. Internataional Journal of Engineering Science and Technology,
2(12):6999–7003, 2010.

[Sal03] P. Sallee. Model-Based Steganography. In International Workshop on Digital
Watermarking, volume 2939, pages 154–167. Springer, 2003.

[Sal05] P. Sallee. Model–Based Methods For Steganography And Steganalysis. In-
ternational Journal of Image and Graphics, 5(1):167–189, 2005.

[Sch96] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code
in C. John Wiley and Sons, Inc., 1996.

[Sch10] E. Schonfeld. H.264 already wonmakes up 66 percent of web videos. http://
techcrunch.com/2010/05/01/h-264-66-percent-web-video/, 2010. Date
Accessed: 9 April 2013.

[Sha12] T. Shanableh. Matrix encoding for data hiding using multilayer video coding
and transcoding solutions. Signal Processing: Image Communication, 27(9),
2012.

[Sim83] G. J. Simmons. The Prisoners’ Problem and the Subliminal Channel. In
CRYPTO, pages 51–67, 1983.

[Smi71] J. L. Smith. The design of lucifer, a cryptographic device for data communic-
ations. Research Report RC3326, IBM, 1971.

http://www.bbc.co.uk/blogs/bbcinternet/2008/08/bbc_iplayer_goes_h264.html
http://www.bbc.co.uk/blogs/bbcinternet/2008/08/bbc_iplayer_goes_h264.html
http://techcrunch.com/2010/05/01/h-264-66-percent-web-video/
http://techcrunch.com/2010/05/01/h-264-66-percent-web-video/

[Sti02] D. R. Stinson. Cryptography Theory and Practice. Chapman & Hall/CRC,
2002.

[Stu08] S. Sturgeon. Showdown: Apple tv vs. vudu. http://www.hdtvmagazine.com/
columns/2008/02/showdown_apple_tv_vs_vudu.php, 2008. Date Accessed:
9 April 2013.

[Tek00] Tektronix. A guide to mpeg fundamentals and protocol ana-
lysis. http://www.img.lx.it.pt/~fp/cav/Additional_material/MPEG2_

overview.pdf, 2000. Date Accessed: 9 April 2013.

[Vim] Vimeo. Video compression guidelines. http://vimeo.com/help/

compression. Date Accessed: 9 April 2013.

[Wan09] J. Wang. Computer Network Security. Springer London, Limited, 2009.

[Wes01] A. Westfeld. F5 – a steganographic algorithm: High capacity despite better
steganalysis. In 4th International Workshop on Information Hiding, pages
289–302. Springer-Verlag, 2001.

[Whi90] D. Whitehead. How to survive under siege. Clarendon ancient history series.
Clarendon Press, 1990.

[WJN10] E. Walia, P. Jain, and N. Navdeep. An Analysis of LSB & DCT based Steg-
anography. Global Journal of Computer Science and Technology, 10(1):4–8,
2010.

[WW98] A. Westfeld and G. Wolf. Steganography in a Video Conferencing System.
In Information Hiding, volume 1525 of Lecture Notes in Computer Science,
pages 32–47. Springer Berlin Heidelberg, 1998.

[XPZ06] C. Xu, X. Ping, and T. Zhang. Steganography in Compressed Video Stream.
In ICICIC ’06. First International Conference on Innovative Computing, In-
formation and Control, Aug 30 – Sep 1, 2006., volume 1, pages 269–272,
2006.

[ZK95] J. Zhao and E. Koch. Embedding Robust Labels into Images for Copyright
Protection. In Klaus Brunnstein and Peter Paul Sint, editors, Intellectual
Property Rights and New Technologies, Proceedings of the KnowRight 95 Con-
ference, 21.-25.8.1995, Wien, Austria, volume 82 of books@ocg.at, pages 242–
251. Austrian Computer Society, 1995.

[ZSZ08] C. Zhang, Y. Su, and C. Zhang. Video steganalysis based on aliasing detection.
Electronic Letters, 44(13), 2008.

66

http://www.hdtvmagazine.com/columns/2008/02/showdown_apple_tv_vs_vudu.php
http://www.hdtvmagazine.com/columns/2008/02/showdown_apple_tv_vs_vudu.php
http://www.img.lx.it.pt/~fp/cav/Additional_material/MPEG2_overview.pdf
http://www.img.lx.it.pt/~fp/cav/Additional_material/MPEG2_overview.pdf
http://vimeo.com/help/compression
http://vimeo.com/help/compression

APPENDIX A. PRELIMINARY RESEARCH 67

Appendix A: Preliminary Research

A.1 Steganosaurus

“Steganosaurus” is the nickname given to this project. From the outset a website (http:
//www.steganosaur.us) was setup to document the research and developments of this
project. Through the blog we recorded all progress, set backs, discoveries and additional
details as frequently as possible.

Figure A.1: Steganosaur.us - Homepage

The Tools section of our website allows visitors to use some of the steganography and
cryptography tools that we produced during the preliminary research phase of this project.

http://www.steganosaur.us
http://www.steganosaur.us

APPENDIX A. PRELIMINARY RESEARCH 68

(a) Steganosaur.us - Tools section (b) Steganosaur.us - Audio stegano-
graphy tool

(c) Steganosaur.us - Image stegano-
graphy tool

(d) Steganosaur.us - Cryptography tool

Figure A.2: Steganosaur.us – Website Sections

A.2 Preliminary Research

Whilst undertaking preliminary research for this project we experimented with basic image
and audio steganographic techniques. This section details some of our findings and the
tools we produced during this preliminary phase.

A.2.1 Audio Steganography

As with video, there are numerous audio formats, each with their own specific proper-
ties. WAV (Waveform Audio File Format) is an uncompressed audio format. Naturally,
uncompressed formats are a lot easier to work with in comparison to compressed formats
such as MP3.

During our exploration of audio steganography we implemented a steganography tool
capable of encoding data in a WAV file, this tool encoded data in the LSB of each sample.
This is the simplest and most discreet substitution-based steganographic technique for
audio files.

WAV File Format

The table below outlines the structure of a WAV file. A WAV file is split into a header
and data portion. The first 44 bytes of a WAV file contain the fixed–length header [IM04].

APPENDIX A. PRELIMINARY RESEARCH 69

Position Description Example Value

01-04 Indicate that the file is a RIFF file. “RIFF”
05-08 Size of the entire file. (Usually specified once the file has been

created)
integer

09-12 File type “WAVE”
13-16 Format chunk marker, includes trailing null character. “fmt ”
17-20 Size of format chunk 16
21-22 Type of format 1
23-24 Number of channels 2
25-28 Sample rate 44100
29-32 Byte rate = (SampleRate * NoChannels * BitsPerSample) / 8 176400
33-34 Block alignment = (NoChannels * BitsPerSample) / 8 4
35-36 Bits per sample 16
37-40 Data section indicator “data”
41-44 Size of the data section integer

Table A.1: WAV File Format

A.3 Early Steganography System

Before arriving at our final steganography system (which is written in C, with a Java
GUI), we originally attempted to develop the system entirely in Java. Whilst we were
building this early Java based steganography system we also included some of our prelim-
inary research tools, such as the image and audio steganography tools and basic image
steganalysis tool.

The figures in this section show the level of functionality implemented in the original
Java application. These screenshots are not comprehensive of the full level of functionality
of the system – some functions were not accessible via the GUI (see Section A.3.2 for further
details).

Figure A.3: Main interface

From the main interface, the following dialogs were accessible:

APPENDIX A. PRELIMINARY RESEARCH 70

(a) Encoding Mode. (b) Decoding Mode.

Figure A.4: Audio Steganography Tool.

(a) Encoding Mode. (b) Decoding Mode.

Figure A.5: Image Steganography Tool.

(a) Steganalysis screen showing when ana-
lysing an image without data embedded.
The textbox contains the LSB string.

(b) Steganalysis screen showing when ana-
lysing an image with data embedded. The
textbox contains the LSB string.

Figure A.6: ASCII distribution comparison

A.3.1 Image Steganography and Steganalysis

It is worth taking a closer look at what our preliminary research demonstrated in figure
A.6. Figure A.6 summarises the comparison of an image before and after LSB embedding.

APPENDIX A. PRELIMINARY RESEARCH 71

(a) Graphic before data is embedded (b) Graphic after data is embedded

Figure A.7: Steganosaurus Graphic

0 20 40 60 80 100 120
0

5

10

15

20

25

30

ASCII Value

F
re

q
u

e
n

cy

Figure A.8: ASCII distribution of LSB string after encrypted data is embedded in a PNG image.

Figures A.7a and A.7b show the original and manipulated image file respectively – note
that there is no noticeable difference between the figure. Using steganalysis it is possible
to detect the presence of a message – figures 2.2 and 2.3 show the distribution of ASCII
values represented in the string of all LSBs for figures A.7a and A.7b respectively.

Further experimentation showed that by encrypting the data before embedding, the
presence of embedded data is better disguised, as demonstrated in figure A.8. The distri-
bution of ASCII values in figure A.8 is more evenly distributed in comparison to figure 2.3
which shows the unencrypted distribution. Notice that with the unencrypted distribution
there is a significant spike in the frequency of ASCII values where the space and A-Z
characters occur.

A.3.2 Early Video Manipulation

Our early work on video manipulation was started in Java using a library called Xuggler1.
Xuggler is a Java API for video that acts as a wrapper for FFmpeg. After learning
how to extract basic meta data from the video file, experimentation progressed to video
manipulation. Initially, progress was good; figures A.9a, A.9b and A.9c show frames from
an inverted and watermarked video in comparison to the original. Whilst this initial work
was successful, it was limited in the fact that it only allowed for manipulation of the frame

1http://www.xuggle.com/xuggler

http://www.xuggle.com/xuggler

(a) Original video frame (b) Visually watermarked video
frame

(c) Inverted video frame

Figure A.9: Video frame manipulation using Xuggler

image within the spatial domain. After some extensive research it was concluded that
Xuggler can provide an excellent range of high-level functionality, however this project
requires manipulating video data at a much lower-level.

The GUI that was developed was not comprehensive of all the functionality that was
implemented. Despite no GUI for their functionality the following classes were also im-
plemented in addition to the audio and image tools:

• us.steganosaur.steganography.video.LSB

This class housed an unsuccessful LSB manipulation scheme for embedding and
extracting data from a video frame. LSB manipulation is not resilient enough to
withstand the lossy compression used in video (see Section 2). This LSB class was
based on the image tool produced during our preliminary research.

• us.steganosaur.VideoPictureInverter

This class inverts all of the colours in a video (see figure A.9c).

• us.steganosaur.VideoWatermarker

This class applies an image watermark to the bottom right of a video (see figure
A.9b).

A.3.3 Deviation from Java

As we mentioned in Section A.3.2, we had to move away from using Java as we needed
access to the lower level functionality of FFmpeg. As a result we switch to using C as
we could natively interface with FFmpeg and could modify the source code, which we
later found we had to do. This proved to be a substantial set back, not only did we have
no prior knowledge of C, but we had to interface with and modify a complex C library

72

APPENDIX B. ADVANCED ENCRYPTION STANDARD 73

consisting of over 650, 000 lines of code.

Appendix B: Advanced Encryption Stand-
ard

B.1 The Advanced Encryption Standard

The Advanced Encryption Standard (AES) is the current de facto encryption algorithm
for securing sensitive information, and is used by governments and militaries across the
world.

In January 1997 the National Institute of Standards and Technology (NIST), a subdi-
vision of the U.S Department of Commerce, start looking for a replacement to the Data
Encryption Standard (DES) which had been the encryption standard for nearly two dec-
ades. DES is now considered to be too insecure for many applications.

Candidate algorithms were submitted to NIST for consideration as alternatives to
DES. All of the algorithms submitted were subjected to review and analysis by NIST
and general public. Rijndael (pronounced “rain dahl”) was finally chosen as the AES out
of the final 15 candidate algorithms. The Rijndael algorithm was developed by Belgian
cryptographers, Joan Daemen and Vincent Rijmen.

B.1.1 AES and Rijndael

Rijndael and AES are often used interchangeably, when they are technically different.
Strictly speaking AES is an implementation of Rijndael. Rijndael can have any multiple
of 32-bit block size and key size between 128- and 256-bits, AES has a strict block size of
128-bits and keys must be either 128-, 192- or 256- bits in length [DR02, p. 31]. The exact
specification of AES is formalised in the Federal Information Processing Standard (FIPS)
197 [Nat01] which was released by the Secretary of Commerce on 6 December 2001.

B.1.2 Algorithm Overview

AES is a symmetric key block cipher. Symmetric key algorithms are encryption algorithms
that use the same cryptographic key for the encryption and decryption process. Block
ciphers and stream ciphers are the types of symmetric key algorithms [Sch96, p. 4]. A
stream cipher will encrypt bits one at a time. On the other hand, a block cipher will read
in a number of bits (called a block) and encrypt them as a single entity. If the plaintext
bits that are being encrypted are less than the block size, the plaintext will be padded
so that the plaintext matches the block size. AES always produces encrypted messages
that are multiples of 128-bits because of the 128-bit block size. Although the algorithm
uses a fixed block size it does accept a variety of key sizes: 128-, 192- and 256- bits. AES
is based on a design principle called a substitution-permutation network (SPN). An SPN
uses substitution boxes (S-Boxes) and permutation boxes (P-Boxes) to apply layers of

APPENDIX B. ADVANCED ENCRYPTION STANDARD 74

substitution and permutation to a block. S- and P- box transformation are often achieved
using exclusive or and bitwise rotation [DR02][p. 77] [AT90,FNS75,KD79,O’C95].

During the encryption and decryption process repetitive transformation rounds are
applied to a 4x4 column-major order matrix - known as a state matrix. The number of
rounds of transformation repetitions that are applied to the state matrix are governed by
the key size.

• 10 rounds for 128-bit keys.

• 12 rounds for 192-bit keys.

• 14 rounds for 256-bit keys.

Each round of encryption involves several processing steps which are used to transform the
plaintext to ciphertext. Conversely, inverse processing steps exist to transform ciphertext
back to plaintext during the decryption process.

The AES algorithm can be summaries into the following four major steps:

1. Key Expansion

2. Initial Round

(a) AddRoundKey

3. Iterate Rounds

(a) SubBytes

(b) ShiftRows

(c) MixColumns

(d) AddRoundKey

4. Final Round

(a) SubBytes

(b) ShiftRows

(c) AddRoundKey

B.2 Algorithm Processes

The definitions of the algorithm processes in the section are derived from the descriptions
in [DR02].

B.2.1 Key Expansion

Key expansion derives round keys for the cipher key using the Rijndael Key Schedule.
The Key Schedule expands a short key into a number of separate round keys. The key
schedule algorithm uses a number of core operations: Rotate, Rcon and Rijndael S-Box.

APPENDIX B. ADVANCED ENCRYPTION STANDARD 75

Operations

Rotation
The rotation operation takes a 32-bit word and rotates it 8-bits to the left, for example,
1D 2C 3B 4A becomes 2C 3B 4A 1D.

Rcon
Rcon (or round constants) are values computed in GF(28), whereby:

Rcon(i) = xi−1 mod x8 + x4 + x3 + x+ 1 (B.1)

with x = 2 and i starting at 1.

Note: this operation is performed as a polynomial in the finite field GF(28) and not as
real integers. The example below shows how to calculate the Rcon(9):

Rcon(9) = x9−1 mod x8 + x4 + x3 + x+ 1 (B.2)

= x8 mod x8 + x4 + x3 + x+ 1 (B.3)

= 100000000 mod 100011011 (B.4)

= 11011 = (27 in decimal) (B.5)

Rijndael S-Box
The Rijndael S-Box is a lookup table of values (see B.2.2), which is used with a SubWord

function that applies the S-Box to each of the 4-byte of the input word to produce an
output word.

Key Schedule Pseudocode

The following pseudocode from FIPS PUB 197 [Nat01] outlines the operation of the
Rijndael Key Schedule algorithm:

1 KeyExpansion (byte key [4∗Nk] , word w[Nb∗(Nr+1)] , Nk)
begin

3 word temp
i = 0

5 whi le (i < Nk)
w[i] = word (key [4∗ i] , key [4∗ i +1] , key [4∗ i +2] , key [4∗ i +3])

7 i = i+1
end whi le

9 i = Nk
whi le (i < Nb ∗ (Nr+1)]

11 temp = w[i −1]
i f (i mod Nk = 0)

13 temp = SubWord(RotWord(temp)) xor Rcon [i /Nk]
e l s e i f (Nk > 6 and i mod Nk = 4)

15 temp = SubWord(temp)
end i f

17 w[i] = w[i−Nk] xor temp
i = i + 1

19 end whi le
end

B.2.2 SubBytes Step

SubBytes consists of applying an S-Box permutation to the bytes of the state matrix. This
is the only non-linear transformation in the entire cipher. The S-Box used by AES was

APPENDIX B. ADVANCED ENCRYPTION STANDARD 76

designed to minimise the input-output correlation, and difference propagation probability.
The S-Box is derived from the multiplicative inverse in GF(28), and is defined as:

g : a → b = a−1 (B.6)

B.2.3 ShiftRows Step

The ShiftRows step involves applying a left circular shift to each row of the state matrix
in turn. The first row remains unchanged, but the first, second and third rows are shift 1,
2 and 3 positions to the left respectively.

M =

a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

 ShiftRows(M) =

a0,0 a0,1 a0,2 a0,3
a1,1 a1,2 a1,3 a1,0
a2,2 a2,3 a2,0 a2,1
a3,3 a3,0 a3,1 a3,2

 (B.7)

B.2.4 MixColumns Step

MixColumns is a permutation that operates column by column of the state matrix. The
MixColumns step takes four input bytes and produces four output bytes, whereby each
input byte affects all of the output bytes. Each column of the state matrix (represented
above by vector a) is treated as a polynomial over GF(28) and is multiplied modulo x4+1
with a polynomial p(x). The polynomial coefficients have simple values: 0, 1, 2 and 3.
Coefficients of 0 and 1 result in no processing, a coefficient of 2 results in a shift to the left
and a coefficient of 3 results in a shift to the left and XORing with the unshifted value.
Let b(x) = p(x)× a(x) (mod x4 + 1), then:

b0,0
b0,1
b0,2
b0,3

 =

2 3 1 1
1 2 3 1
1 1 2 3
3 1 1 2

×

a0,0
a0,1
a0,2
a0,3

 (B.8)

B.2.5 AddRoundKey Step

AddRoundKey is a simple XOR of the current round, a, with the subkey, k:
a0,0 a0,1 a0,2 a0,3
a1,0 a1,1 a1,2 a1,3
a2,0 a2,1 a2,2 a2,3
a3,0 a3,1 a3,2 a3,3

⊕

k0,0 k0,1 k0,2 k0,3
k1,0 k1,1 k1,2 k1,3
k2,0 k2,1 k2,2 k2,3
k3,0 k3,1 k3,2 k3,3

 =

b0,0 b0,1 b0,2 b0,3
b1,0 b1,1 b1,2 b1,3
b2,0 b2,1 b2,2 b2,3
b3,0 b3,1 b3,2 b3,3

 (B.9)

B.3 Block Cipher Modes

A block cipher is a simple cryptographic primitive that can covert a fixed-length block of
plaintext to a block of ciphertext. Modes of operation are used to specify how the cipher
encrypts and decrypts blocks. This is especially important for ensuring the confidentiality
of long messages [DR02, p. 27].

Using cipher block modes can help to prevent against some attacks such as frequency
analysis. Block size can also be an important consideration, as small block sizes can be

APPENDIX B. ADVANCED ENCRYPTION STANDARD 77

vulnerable to attacks based on statistical analysis. Most block ciphers use a typical block
size of 64-bits, however AES uses a larger 128-bits [MOVR96, p. 225].

The following are popular block cipher modes:

• Electronic Code Book (ECB)

• Cipher Block Chaining (CBC)

• Cipher Feed back mode (CFB)

• Output Feed Back mode (OFB)

The remainder of this section will explain how each of the above block modes worked.
These explanations are based on [Sch96] and [MOVR96].

B.3.1 Electronic Code Book (ECB)

Electronic Code Book is by far the simplest method of encryption with a block cipher.
With ECB each block is encrypted independently, whilst this can present some advantages,
it is a method that is heavily undermined by the disadvantages.

The main advantage of ECB is that each block is independent, thus meaning that
plaintext does not have to be encrypted or decrypted linearly (from start to finish). In
some contexts the ability to randomly and independently access blocks of encrypted data
can be useful but this does open up a number of vulnerabilities.

The independent nature of ECB means that two identical plaintext blocks will have
identical ciphertext blocks - this is a significant problem. Patterns in plaintext data will
still highly correlated between the plaintext and ciphertext blocks. If an attacker has
access to several plaintext and ciphertext messages they can start to compile a codebook
of known plaintext-ciphertext pairs.

Electronic Code Book (ECB) - Encryption

Plaintext

Ciphertext

Block

Encryption
Key

Plaintext

Ciphertext

Block

Encryption
Key

Plaintext

Ciphertext

Block

Encryption
Key

Figure B.1: Electronic Code Book (ECB) - Encryption

APPENDIX B. ADVANCED ENCRYPTION STANDARD 78

Electronic Code Book (ECB) - Encryption

Plaintext

Ciphertext

Block

Decryption
Key

Plaintext

Ciphertext

Block

Decryption
Key

Plaintext

Ciphertext

Block

Decryption
Key

Figure B.2: Electronic Code Book (ECB) - Decryption

B.3.2 Cipher Block Chaining (CBC)

Invented by IBM in 1976, CBC ensures that each plaintext block is randomised before it
is encrypted with the block cipher. CBC XORs each block of plaintext with the previous
ciphertext block before encrypting with the block cipher. To ensure randomisation an
Initialisation Vector (IV) is used for the first block. The CBC method makes each block
of ciphertext dependent on all of the plaintext blocks up to that point. Unlike ECB, CBC
must encrypt and decrypt linearly because of this dependancy.

Cipher Block Chaining (CBC) - Encryption

Plaintext

Initalization Vector (IV)

Ciphertext

Block

Encryption
Key

Plaintext

Ciphertext

Block

Encryption
Key

Plaintext

Ciphertext

Block

Encryption
Key

Figure B.3: Cipher Block Chaining (CBC) - Encryption

APPENDIX B. ADVANCED ENCRYPTION STANDARD 79

Cipher Block Chaining (CBC) - Decryption

Plaintext

Ciphertext

Block

Decryption
Key

Plaintext

Ciphertext

Block

Decryption
Key

Plaintext

Ciphertext

Block

Decryption
Key

Initalization Vector (IV)

Figure B.4: Cipher Block Chaining (CBC) - Decryption

B.3.3 Cipher Feed Back mode (CFB)

ECB and CBC are modes specifically for block ciphers, but block ciphers can also use
stream cipher modes. CFB is a self-synchronising stream cipher - using this mode will
turn a block cipher into a self-synchronising stream cipher. Self-synchronising stream
ciphers use previous ciphertext bits to generate the keystream bits.

Cipher Feed Back (CFB) - Encryption

Initalization Vector (IV)

Ciphertext

Block

Encryption

PlaintextPlaintext

Key

Ciphertext

Block

Encryption
Key

Ciphertext

Block

Encryption

Plaintext

Key

Figure B.5: Cipher Feed Back (CFB) - Encryption

APPENDIX B. ADVANCED ENCRYPTION STANDARD 80

Cipher Feed Back (CFB) - Decryption

Initalization Vector (IV)

Plaintext

Ciphertext

Block

Encryption
Key Key Key

Plaintext

Block

Encryption

Plaintext

Block

Encryption

Ciphertext Ciphertext

Figure B.6: Cipher Feed Back (CFB) - Decryption

B.3.4 Output Feed Back mode (OFB)

OFB is a synchronous stream cipher mode whose keystream is independent of the message
being encrypted (independent of plaintext and ciphertext). OFB produces ciphertext by
XORing the generated keystream with the plaintext.

Output Feed Back (OFB) - Encryption

Initalization Vector (IV)

Ciphertext

Block

Encryption

Plaintext

Key

Plaintext Plaintext

Ciphertext

Block

Encryption
Key

Ciphertext

Block

Encryption
Key

Figure B.7: Output Feed Back (OFB) - Encryption

APPENDIX B. ADVANCED ENCRYPTION STANDARD 81

Output Feed Back (OFB) - Decryption

Initalization Vector (IV)

Ciphertext Ciphertext Ciphertext

Block

Encryption

Plaintext

Key

Plaintext Plaintext

Block

Encryption
Key

Block

Encryption
Key

Figure B.8: Output Feed Back (OFB) - Decryption

	Signed Declaration
	Abstract
	Acknowledgements
	Preface
	Contents
	List of Figures
	List of Tables
	Glossary
	Introduction
	Project Aims
	The History of Steganography
	First Evidence of Steganography
	Linguistic Steganography

	Modern Steganography
	Prisoners' Problem
	Steganography, Security and Cryptography
	Watermarking

	Steganalysis
	Passive Warden
	Active Warden
	Malicious Warden

	Video Steganography
	Structure of this Report

	Literature Survey
	Fundamentals and Background
	Injection Techniques
	Substitution Techniques
	Generation Techniques
	Transform Domain Techniques

	Video Steganography
	Transform-Domain
	Streaming and Real Time

	Video Coding
	Compression
	Quantisation
	Coding Concepts

	Steganalysis
	Overview of Steganalysis Techniques
	Video Steganalysis

	Cryptography
	Substitution Ciphers
	Symmetric Algorithms
	Asymmetric Algorithms

	Summary

	Requirements and Analysis
	Project Overview
	Requirements
	Functional Requirements
	Non-Functional Requirements

	Analysis
	Application
	Steganography
	Steganalysis

	Testing Strategy
	Evaluation Strategy
	Chapter Summary

	Design and Implementation
	Design Decisions
	Libraries
	Codecs

	System Design
	Overview
	Command Line Tool
	Graphical User Interface

	Implementation
	Overview
	Command Line Tool
	Graphical User Interface
	Cross Platform Compatibilities

	Chapter Summary

	Testing
	Unit Testing
	System Testing
	Video Testing
	User Acceptance Testing
	Chapter Summary

	Evaluation
	Deliverables and Implementation
	Results and Findings
	Further Work
	Chapter Summary

	Conclusion
	Bibliography
	Preliminary Research
	Steganosaurus
	Preliminary Research
	Audio Steganography

	Early Steganography System
	Image Steganography and Steganalysis
	Early Video Manipulation
	Deviation from Java

	Advanced Encryption Standard
	The Advanced Encryption Standard
	AES and Rijndael
	Algorithm Overview

	Algorithm Processes
	Key Expansion
	SubBytes Step
	ShiftRows Step
	MixColumns Step
	AddRoundKey Step

	Block Cipher Modes
	Electronic Code Book (ECB)
	Cipher Block Chaining (CBC)
	Cipher Feed Back mode (CFB)
	Output Feed Back mode (OFB)

