
Video Steganography

COM3600 Research Project

This report is submitted in partial fulfillment of the requirement for the degree
of Master of Software Engineering in Computer Science by James Ridgway

Author:
James Ridgway

Supervisor:
Dr. Mike Stannett

3rd December 2012

Signed Declaration

All sentences or passages quoted in this report from other people’s work have been specifically ac-
knowledged by clear cross-referencing to author, work and page(s). Any illustrations which are not
the work of the author of this report have been used (where possible) with the explicit permission
of the originator and are specifically acknowledged. I understand that failure to do this amounts
to plagiarism and will be considered grounds for failure in this project and the degree examination
as a whole.

Name: James Ridgway

Signature:

Date: 3rd December 2012

i

Abstract

Digital steganography typically centres on hiding messages in digital files. Typically, steganography
focuses on hiding content in image and audio files. In comparison, the research and usage of
multimedia files as covert objects remains limited. The aim of this project is to explore different
methods for encoding messages in a multimedia container, utilising both the audio and video
stream, and using steganalysis to determine the effectiveness.

ii

Preface

From the outset I have documented a large proportion of my work and progress online via http;//

www.steganosaur.us, therefore some of the material outlined in this document may already have
been published online.

In addition to documenting the progress of this project, I have developed several tools which
are available online. Some of these tools were produced as part of our preliminary research into
fundamental steganographic techniques. Some information relating to neighbouring fields, such as
cryptography, can also be found on the website.

iii

http;//www.steganosaur.us
http;//www.steganosaur.us

Contents

Signed Declaration i

Abstract ii

Preface iii

List of Figures vi

List of Tables vii

List of Code Listings viii

1 Introduction 1
1.1 The History of Steganography . 1

1.1.1 First Evidence of Steganography . 1
1.1.2 Linguistic Steganography . 1

1.2 Modern Steganography . 2
1.2.1 Prisoners’ Problem . 2
1.2.2 Steganography, Security and Cryptography 2
1.2.3 Watermarking . 3

1.3 Steganalysis . 3
1.3.1 Passive Warden . 3
1.3.2 Active Warden . 3
1.3.3 Malicious Warden . 3

1.4 Structure of this Report . 3

2 Literature Survey 4
2.1 Fundamentals and Background . 4

2.1.1 Injection Techniques . 4
2.1.2 Substitution/Insertion Techniques . 4
2.1.3 Generation Techniques . 5
2.1.4 Transform Domain Techniques . 6

2.2 Video Steganography . 6
2.2.1 Transform-Domain . 7
2.2.2 Motion Vector . 7
2.2.3 Streaming and Real Time . 9

2.3 Steganalysis . 9
2.3.1 Overview of Steganalysis Techniques . 10
2.3.2 Video Steganalysis . 11

2.4 Summary . 11

3 Requirements and Analysis 12
3.1 Project Overview . 12

3.1.1 Container File . 12
3.1.2 Security . 12

3.2 Steganography System . 13
3.2.1 Encryption and Decryption . 13

iv

3.2.2 Embedding Algorithm . 13
3.2.3 Extraction Algorithm . 14

3.3 Evaluation . 14
3.3.1 Steganalysis . 15
3.3.2 Iteration . 15

3.4 Functional Requirements . 15
3.4.1 Steganography Requirements . 15
3.4.2 Steganalysis Requirements . 16

3.5 Non-functional Requirements . 16
3.6 Summary . 16

4 Progress 17
4.1 Preliminary Research . 17

4.1.1 Audio Tool . 17
4.1.2 Image Tool . 17
4.1.3 Steganalysis Tool . 18

4.2 Video Manipulation . 18
4.2.1 Original Java System . 20
4.2.2 C System . 20

4.3 Summary . 20

5 Conclusion and Project Plan 21
5.1 Project Plan . 22

Bibliography 25

A Fundamental Steganography Techniques 28
A.1 Audio Steganography . 28

A.1.1 WAV File Format . 28
A.1.2 Source Code . 29

A.2 Image Steganography . 35

B Steganography System 38
B.1 Java System . 38
B.2 Makefile . 40

C steganosaur.us 42

v

List of Figures

2.1 This figure shows LSB encoding of the word “Hello” inside container data. 5
2.2 ASCII distribution from LSB string before data is embedded in a PNG image. 10
2.3 ASCII distribution from LSB string after data is embedded in a PNG image. 10

3.1 System overview. 13
3.2 Flowchart illustrating embedding algorithm. 14

4.1 Graphic before data is embedded . 18
4.2 Graphic after data is embedded . 18
4.3 ASCII distribution from LSB string after encrypted data is embedded in a PNG image. . 18
4.4 Original video frame . 19
4.5 Visually watermarked video frame . 19
4.6 Inverted video frame . 19

5.1 Gantt Chart - Part 1 of 2 . 23
5.2 Gantt Chart - Part 2 of 2 . 24

B.1 Main interface . 38
B.2 Audio steganography tool - encoding mode . 39
B.3 Audio steganography tool - decoding mode . 39
B.4 Image steganography tool - encoding mode . 39
B.5 Image steganography tool - decoding mode . 39
B.6 Steganalysais screen showing when analysing an image without data embedded. The

textbox contains the LSB string. 39
B.7 Steganalysais screen showing when analysing an image with data embedded. The

textbox contains the LSB string. 40

C.1 steganosaur.us - Homepage . 42
C.2 Steganosaur.us - Tools section . 43
C.3 Steganosaur.us - Audio steganography tool . 43
C.4 Steganosaur.us - Image steganography tool . 43
C.5 Steganosaur.us - Cryptography tool . 43

vi

List of Tables

3.1 Functional Requirements – Steganography . 15
3.2 Functional Requirements – Steganalysis . 16
3.3 Non–Functional Requirements . 16

A.1 WAV File Format . 28

vii

List of Code Listings

4.1 VideoPictureInverter Java class - inverting a video frame with Xuggler 19
A.1 C version of the audio steganography tool . 29
A.2 Java version of the audio steganography tool . 31
A.3 Java version of the audio steganography tool . 35
B.1 FFmpeg makefile . 40

viii

Chapter 1

Introduction

Steganography is an unusual aspect of security that is not commonly known, despite having a
history that dates back thousands of years [Col03]. The roots of steganography date back as far
as the Ancient Greeks, who provide us with the first description of a technique, which 1500 years
later, was labeled “Steganography”. The term is derived from two Greek words: stegano and
graphia, meaning “covered” and “writing” respectively [Fri10, Col03]. Put simply, steganography
is the practice of concealed communication where the presence of a message is secret.

Despite the Greek origin, the word “Steganography” does not appear in the literature until
the 15th Century, when Johannes Trithemius uses the word in trilogy published in Frankfurt in
1606. The first two volumes, Polygraphia and Steganographia specifically discuss cryptography and
steganography [Fri10,Col03].

1.1 The History of Steganography

1.1.1 First Evidence of Steganography

Whilst the term “Steganography” is only a few hundred years old, the concept of hiding and
concealing messages has existed for thousands of years.

The earliest known written account of steganography being used is told by Herodotus (484-425
BC) [Her96], who tells how his master, Histiaeus, sent a slave to the Ionian city of Miletus with a
message concealed on his body. The slave’s head was shaved and the message was tattooed on his
scalp. Once his hair had grown back concealing the message he was sent on his way to the city’s
regent, Aristagoras. Upon his arrival, the slave’s head was shaved revealing a message persuading
Aristagoras to revolt against the Persian king.

Herodotus also documents how Demeratus used a wax tablet to send a concealed message to
Sparta, warning of the planned invasion of Greece by the Persian Great King, Xerxes. Demeratus
removed the wax from the tablet and inscribed his message on the wood beneath before applying
a fresh coat of wax. The tablet could then be carried and used normally. The hidden message
was only revealed by scraping away all of the wax. Aeneas the Tactician, another Greek writer
well-known for his various steganographic approaches and techniques, also proposed methods for
concealing information in women’s earrings, or using pigeons to deliver secret messages [Tac90].

1.1.2 Linguistic Steganography

Linguistic steganography is possibly one of the oldest forms of steganography. Aeneas the Tactician,
again, described many linguistic techniques, which are now considered fundamentals of linguistic
steganography. For instance, he describes altering the height of letters or marking particular
letters with dots or small holes. Linguistic steganography has been used prolifically throughout
history, and modern day variants of these techniques still exist today. Giovanni Boccaccio, a 14th
Century poet, encoded over 1500 letters taken from three sonnets, into his acrostic poem, Amorosa
Visione [Fri10]. This is possibly one of the largest examples of linguistic steganography.

Possibly the most interesting linguistic technique was proposed by Francis Bacon. Bacon’s
method allows messages to be encoded using a binary representation, by using normal or italic

1

font [Bac40]. The scheme proposed by Bacon is a precursor to modern steganographic techniques.
In 1857, Brewster proposed a photographic technique that would allow text to be shrunk down

to a dirt-sized speck. Only under very high levels of magnification would it be possible to read the
message. In World War I, the Germans used this technique to conceal large messages in the corner
of post cards. The “microdot” technique used by the Germans was capable of hiding entire pages of
text and even photographs, making them a powerful container of covert information [Fri10,JDJ03].

During World War II the following message was sent by a German spy [Kah67]:

Apparently neutral’s protest is thoroughly discounted and ignored. Isman hard hit.
Blockade issue affects pretext for embargo on by products, ejecting suets and vegetable
oils.

By taking the second letter of each word the following message is revealed:

Pershing sails from NY June 1

The type of linguistic steganography used above is sometimes called a null cipher [Rab04].

1.2 Modern Steganography

With the advent of computers and modern technology steganography is becoming more and more
widespread. Image, audio and video files present interesting digital file formats for concealing
information. The invention of the internet has provided a greater means of sharing information,
and as such, it has become commonplace to share digital media. Media files are generally large in
size, which has facilitated the hiding of large quantities of data.

1.2.1 Prisoners’ Problem

Undetectability is an imperative component of steganography. Simmons famously illustrates this
crucial fundamental through his description of the principle of the Prisoners’ Problem [Sim83].

Alice and Bob are imprisoned. Alice and Bob can communicate with each other, but all of their
communication is constantly monitored by warden Wendy. Alice and Bob want to hatch an escape
plan, but if warden Wendy catches them trying to communicate secretly, they will be placed into
solitary confinement. Alice and Bob decided to use steganography to communicate covertly. Alice
and Bob must make sure that their communication is undetectable, since the mere presence of a
secret message will alert Wendy and result in her placing both of them into solitary confinement.

1.2.2 Steganography, Security and Cryptography

Cryptography and steganography are often regarded as similar practices, and whilst both fields
deal with secure communication, the differences between these two fields are plentiful.

For cryptography to be secure, a communication must be unintelligible – cryptography is only
broken once the original message is understood. Thus, an encrypted message is secure if it cannot
be read.

Steganography, on the other hand, is only secure if the existence of the message is not known.
Once a covert message is revealed, steganography has failed, because something that was intended
to be covert, has become overt.

Whilst these fields differ in their definitions of “secure”, there are areas which are common to
both domains. Kerckhoff’s principle, which is native to cryptosystems, but is also applicable to
steganography, states that a cryptosystem should remain secure even if everything relating to it is
public knowledge - security should reside in the key [Kah67,Sch96]. This applies to steganography
(and the Prisoners’ Problem) - even if the steganographic algorithm is public knowledge, the
existence of a message should remain unknown without the correct steganographic key.

2

1.2.3 Watermarking

Watermarking is a technique for hiding supplementary information in a file [Fri10]. This technique
is similar to steganography, however there are some key differences. With steganography the data
embedded should be covert and undetectable; in contrast it does not matter if watermarked inform-
ation is easy to detect, the important factor is that it should be difficult to remove. Removing a
watermark should result in significant degradation of the quality of the container file [Col03]. Wa-
termarking is commonly used to help trace the origin of files. MP3 files purchased over the internet
are regularly encoded with the details of the buyer and seller. The traceability and public know-
ledge of watermarking acts as a strong deterrent against online piracy. Watermarking is successful
because of the difficulties involved in separating embedded content from its container [Fri10].

1.3 Steganalysis

Steganalysis is the practice of detecting the presence of messages that have been hidden using
steganography. Ideally, steganalysis will also determine the contents of the message. In the Pris-
oner’s Problem, steganalysis is the job of the Warden. Wardens can be associated with a variety
of categories such as: active, passive and malicious.

1.3.1 Passive Warden

A passive warden inspects data, attempting to determine by observation alone, whether or not a
message is present. Passive wardens will often use statistical analysis in an effort to ascertain the
presence of a message [Fri10].

1.3.2 Active Warden

An active warden will not only attempt to determine the presence of a message, but also prevent
the exchange of covert messages.

In the case of Linguistic steganography, an active warden will rephrase passages and exploit
synonyms in intercepted communiques. During World War II the U.S Post Office censored the
contents of telegrams to ensure that hidden messages were not exchanged. In one instance, a
censor changed “father is dead” to “father is deceased”, resulting in the reply “is father dead or
deceased?” [HLvR+00].

An active warden will only perform slight modification of any intercepted messages.

1.3.3 Malicious Warden

A malicious warden will attempt to catch the prisoners’ communicating, often by modifying large
portions of the container or even fabricate entire messages by impersonating one of the prison-
ers [Cra96,BDBG08].

1.4 Structure of this Report

The remainder of this report is divided into eight chapters. In sect. 2 we review the existing
literature starting with an overview of the fundamental principles and techniques, before discussing
steganography and steganalysis in detail. In sect. 3 we analyse the requirements and goals of this
project, and identify how the success of the project will be evaluated. Section 4 presents the
progress that has been made thus far. Finally, in sect. 5, we summarise our findings and discuss
the avenues for future research. A plan is also proposed providing, in detail, a break down of the
project into component sections and the corresponding deadlines for each section.

3

Chapter 2

Literature Survey

There are numerous techniques for hiding data in a digital container file. Although I will be focusing
solely on using a video container file, there are techniques in audio and image steganography that
still bear relevance to video file formats. Furthermore, video can be split into two components: the
audio stream and the picture stream. To be able to work with video steganography, it is important
that we understand the audio and image (picture) techniques that have already been developed
and explored within digital steganography.

2.1 Fundamentals and Background

There are a variety of steganographic techniques that can be used to conceal information in a con-
tainer file. The steganographic techniques discussed herein fall into one of the following categories
which are defined by the method of data hiding: injection, substitution/insertion, generation and
transform domain.

2.1.1 Injection Techniques

Steganography performed by injection is by far the simplest steganographic technique. As the
name suggests, data is injected into redundant areas of the container file. Most files have an EOF
(end of file) marker or a file size marker, which indicates where the reading of a file should cease.
Data can be placed at the end of the file (after the EOF marker), without affecting the integrity
of the container file [Col03]. This technique is very simple and as such, is very easy to detect.

This technique works well on files such as EXEs and WAVs. EXE files have an end of file
marker, after which you can place any quantity of data [Col03]. WAV files have a data length
defined in their header (see A.1.1), therefore, any data can be injected after the WAV-data section
(at the end of the file).

The nature of injection techniques means that it is a fairly straightforward process to detect
and extract the covert data. Techniques that embed the data into the container (via generation
or insertion) are generally harder to detect because the covert data is interwoven with the original
container data, thus making it harder to identify the presence of covert data.

2.1.2 Substitution/Insertion Techniques

A substitution or insertion technique will identify areas of a file of least relevance, and replace this
data with the covert data [Col03]. This technique does not modify the size of the container file,
and is consequently limited by the steganographic capacity of the file.

LSB Manipulation

One of the most common steganographic techniques is least significant bit (LSB) manipulation
[JDJ03]. LSB manipulation can be easily applied to some audio and image formats, and works by
modifying part of the representation of the data stored within the container format. In the context
of audio it is possible to modify the LSB of each sample without causing any audible difference

4

H e l l o

01001000 01100101 01101100 01101100 01101111

S t e g a n...

01010011 01110100 01100101 01100111 01100001 011...

01010010 01110101 01100100 01100110 01100001 011...

Covert Data:

Container Data:

Embedded Data:

Figure 2.1: This figure shows LSB encoding of the word “Hello” inside container data.

to the sound during playback [Col03]. With palette-based image files LSB manipulation works in
a similar vein as audio files, but instead of modifying the LSB of a sample, it is the LSB of the
three-byte RGB colour representation that is modified. In either case, the fluctuation in colour or
sound that is introduced by LSB is not noticeable to a human.

Before explaining how different compression levels affect the use of LSB manipulation the
spatial and transform domains must be defined. The spatial domain in the current context is best
defined as the normal image space in which pixels can be represented as a two-dimension matrix.
Representing an image in the spatial domain allows for the image to be changed in space by the
direct manipulation of pixels. On the other hand, the transform (or frequency) domain exploits
the fact that any signal can be represented as a sum of sine waves. In the transform domain an
image is represented by the different frequencies that comprise it, and their respective intensities.

With uncompressed and lossless compression formats the exact representation of data is pre-
served which makes LSB manipulation straightforward [Fri10]. In contrast, lossy compression
generally discards insignificant portions of data, such as LSBs, this makes LSB manipulation re-
dundant when work with data that is compressed using lossy compression. Generally compressed
data cannot be modified as this corrupts the compressions and has an adverse impact on the data
that has been compressed; this rules out applying LSB manipulation to compressed data.

WAV audio files are uncompressed which allows for direct modification of the raw data stored
in the files (so long as the file header is preserved). Palette-based images (PNGs and GIFs) are
examples of lossless compressed formats. Once the data in these files has been decoded, LSB
manipulation can be applied to any of the pixel values. JPEG and MP3 are two examples of lossy
compression file formats. JPEG images are represented in the transform domain (see sect. 2.1.4)
and the majority of this information is encoded using lossy compression. Small portions of the
file (DCT coefficients) are encoded using lossless compression. Generally any data that is lossless
encoded can be manipulated using LSB encoding [Fri10].

2.1.3 Generation Techniques 1

Generation techniques involve generating a container file based on the covert data that is to be
embedded. Most generation techniques create fractal images, which have specific mathematical
properties; essentially a fractal consists of patterns and lines of different colours.

With a generation technique there is no original container file because the cover object is com-
pletely generated, this provides a unique advantage. On the other hand with other steganographic
techniques if the original container file exists (or is leaked) outside the secure domain this can
provide an attacker with significant information that can accelerate a steganalysis attack.

A steganography system that uses generation techniques should produce a fractal image that fits
the profile of those communicating, for instance, if Alice and Bob are car enthusiasts, using pictures
of cars has a natural plausibility and will not arouse suspicion. This technique is disadvantages
by the fact that producing a steganography system that generates realistic fractals is complex

1Much of the information in this section is based on [Col03]

5

and time consuming. These disadvantages would prevent a generation technique being used in
time–critical situations such as real time video steganography.

Research into generation techniques is very limited – this could relate to the fact that the
method of encoding data is often heavily dependent on the subject matter of the fractal.

2.1.4 Transform Domain Techniques

Transform domain techniques are generally used on compressed container files. For instance, data
hiding in JPEGs is commonly achieved by operating in the frequency domain and modifying the
Discrete Cosine Transform (DCT) [And96,ZK95,RDB96]. One of the earliest methods for hiding
data in JPEG files relied on changing the LSB of the DCT coefficients. This technique is relatively
basic, and numerous steganalysis methods have been developed which are easily capable of detect-
ing covert data that is embedded using this method (see 2.3). Other DCT-based methods, such as
F5 [Wes01], Outguess [Pro01], Model-Based [Sal05,Sal03], Modified Matrix Encoding [KDR06] and
Perturbed Quantization [FGS05] have been developed, all of which are dependent on modifying
the DC coefficients.

Discrete Cosine Transform

The discrete cosine transform can be used to convert an image from the spatial domain into the
frequency domain. The spatial domain represents data based on intensity of pixels. A stegano-
graphic technique that uses LSB manipulation on a palette-based image (PNG of GIF) would be
working in the spatial domain, as changing the LSB modifies the pixel colour (intensity). In con-
trast, DCT separates parts of an image based on frequency. Image signal energy is generally stored
in low-frequency regions, therefore high-frequency information can be discarded or manipulated
without causing significant degradation of image quality [WJN10]. Steganographic approaches
that operate in the transform domain generally use properties of the DCT; there is very limited
research in alternative transforms such as Discrete Wavelet Transforms [KK10].

The 2-dimensional DCT, F (m,n), of an N ×M pixel image is defined as follows:

F (m,n) =
2√
MN

C(m)C(n)

M−1∑
x=0

N−1∑
y=0

f(x, y) cos
(2x+ 1)mπ

2M
cos

(2y + 1)nπ

2N
(2.1)

where

C(m) = C(n) =

{
1√
2

if n = 0

1 if n 6= 0
(2.2)

As mentioned previosly, LSB manipulation cannot be applied to the colours of pixels when working
with lossy compression formats such as JPEGs. This is because JPEG images use a DCT as
part of the compression process, during which values such as LSBs are not necessarily retained.
Whilst the conversion between the spatial and the transform domain (and vice versa) uses lossy
compression, the discrete cosine coefficients are stored using lossless encoding, therefore most JPEG
steganography techniques encode data in the discrete cosine coefficients.

2.2 Video Steganography

Video Steganography is now a growing area of research as a video container file has numerous
advantages not exhibited by other container formats. Modification of a video file is significantly
more difficult to detect by the human visual system, as frames are displayed on screen for extremely
brief periods of time [AFJK+10]. Furthermore, video frames are not crisp, sharply focused images,
so variations in pixel colour induced by steganography will blend into the frame. Video (especially
HD Video) container files are significantly larger than audio or images files, thus reducing the

6

problem of steganographic capacity. Noda et al. overcome steganographic capacity issues by
using a Bit Plane Complexity Segmentation (BPCS) technique for wavelet compressed video data
[NFNK04]. Similarly, Jalab et al proposes a frame selection method for hiding data in MPEG
video, again using BPCS [JZZ09]. BPCS achieves a high embedding rate, with minimal levels of
distortion. This is achieved by identifying noisy regions of an image frame, and embedding a high
density of covert data. Embedding high proportions of data in already noisy sections of a frame
does not cause any significant degradation of image quality [JZZ09,NFNK04].

Eltahir et al. propose and discuss the application of LSB manipulation in the context of
video [EKZZ09]. Unfortunately, their paper does not discuss the security of the technique. LSB
manipulation, in comparison to other techniques, is relatively easy to detect and more often than
not, steganalysis can be quickly performed on the distribution of LSBs to determine the presence
of a message (see 2.3. LSB embedding can be made more difficult to detect by encrypting the
covert data before embedding it in the container file. The encryption process produces encryp-
ted data with a more uniform distribution across the ASCII range, thus suppressing any strong
characteristics of the original covert data (see figure 4.3 and section 4.1.3) [Col03].

Singh et al. have published a video steganography technique that specifically addresses hiding
an image in a video [SA10]. They discuss the nature of a video file as a container, stating that rows
of pixels that form an image can be spread across the frames that comprise the video. Whilst the
proposed method centres around LSB manipulation, this is one of the few papers that exploits the
multi-dimensional aspect of a video container file. This paper highlights that without the entire
video an attacker will not be able to determine the full meaning of a covert message (but noe, this
is not the goal of steganography; the goal is to avoid detection). Singh et al. also claim that the
proposed technique is “very useful in sending sensitive information securely” without providing any
supporting evidence or justification for this claim, or the effectiveness of the proposed technique.

2.2.1 Transform-Domain

Westfeld and Wolf describe a system that uses a DCT method to embed data in the H.261 standard
[WW98]. This method exploits the characteristics of H.261, and similarly, M-JPEG and MPEG.
These standards essentially use JPEG images to construct the picture stream. As with JPEG,
H.261, MPEG and M-JPEG use a discrete cosine transform as a basis for the lossy compression
that they use. Westfeld and Wolf describe a technique for modifying “suitable” DCT blocks. This
vetting quality ensures that the encoded message cannot be detected just by analyzing the DCT
coefficients: a direct comparison has to be made to the original container file [WW98].

Chae et al. also propose a DCT based method, in which the amount of data to be embedded in
each 8×8 DC block is determined by a scale factor. This technique adjusts the scale factor so that
more data is hidden in textured areas, an approach based on the understanding that “the human
visual system is more sensitive to the changes in low frequency regions than in highly textured
regions” [CM99].

2.2.2 Motion Vector

Before proceeding with an explanation of motion vector based techniques, several terms specific to
video encoding need to be defined [Muk11]:

Video Terminology

• Macroblock
Macroblocks in video are similar to macroblocks in image encoding. A macroblock is a 16×16
pixels segment in a frame. This forms the basic coding unit.

• Intra-frames (I-frame)
An intra-frame, or I-frame, is coded independently from any other frames. These frames
allow a user to seek to a random point in a compressed video stream.

7

• Predicted-frames (P-frame)
A predicted frame, or P-frame, is calculated by a prediction from its nearest I- or P- frame.
The prediction process uses motion compensation, which produces a high level of compression
from these frames.

• Bidirectional-frames (B-frame)
A bidirectional frame, or B-frame, is calculated using prediction from frames in both direc-
tions (a previous frame and a future frame). Predicting these frames required a higher level
of computation, but the resultant frame has a greater level of compression than P-frames.

• Motion Vector
P- and B- frames are based on motion vector values which are coded with respect to a
reference frame (a previous P- or B- frame). A frame is broken down into segments called
macroblocks. Motion vectors are used to describe the offset position of each macroblock in
the current frame, from the position in the reference frame. In the case of a B-frame, motion
vectors can describe offsets from a previous frame, a future frame, or both.

Motion Vector Techniques

A large proportion of image and video steganographic techniques involve concealing data in
DCT blocks, by varying degrees. Alternatively, Prabhakaran and Shanthi propose a hybrid
cryptography-steganography method for hiding an AES encrypted message inside the motion vec-
tor of a video [PS12]. This technique is certainly worth noting, as the overall quality of the video
file is preserved, and an additional layer of security is provided with use of AES cryptography.

Shanableh builds on the principle of motion vector encoding, by using a layered approach to
encode data in the motion vector and quantization scales [Sha12]. This proposed method doubles
the steganographic capacity of the container file when compared to other motion vector based
methods. This technique can only be used on raw video, however; in the case of compressed
video, simply adding a transcoding step will allow for the encoding in both motion vector and
quantization scales. The number of quantization scales available in a coded video frame is limited;
Shanableh increases this number for each frame by using “multilayer encoding” - two layers, a
low-resolution base layer and a higher-resolution enhanced layer, thus providing two quantization
scales for each macro block [Sha12]. This technique provides a high steganographic capacity, whilst
causing minimal degradation of video quality. This method seems to specifically focus on increasing
the steganographic capacity of a video container file, something which is not necessarily esssential,
given how one minute of video can contain in excess of a thousand frames.

Fang and Chang document a method that focuses on the embedding of data inside the motion
vectors. In their scheme, they propose embedding the data in the phase angle of the motion vector
of macroblocks, a technique that works for both compressed and uncompressed video [FC06]. As
part of Fang and Chang’s proposed method, they select candidate macroblocks for encoding based
upon a magnitude threshold of the motion vector, as modifications made to a motion vector of
high magnitude (a fast moving object) are relatively undetectable, whereas modifications to small
motion vectors are likely to produce noticeable changes.

Aly proposes a different approach to that of Fang and Chang. In Aly’s approach he selects
candidate macroblocks based on their prediction error, and the covert data is embedded in the
LSB of the suitable vectors [Aly11]. Under evaluation this technique has proven successful, and
keeps distortion and overhead to a minimum. Both Aly and Fang et al. produce methods that are
successful in encoding data with minimal distortion, but their methods have one key difference.
Fang and Chang select motion vectors based on properties exhibited by the motion vectors them-
selves, whereas Aly selects motion vectors based on the properties of the associated macroblocks.
Although different, these approaches yield similar results in terms of image quality [Aly11,FC06].
Aly compares his approach with that of Zhang et al. [XPZ06]: his findings show a better balance
of the payload (covert data) between P- and B- frames with his method [Aly11]. If time permits,
it would be worth investigating how Aly’s method responds to different payload sizes.

8

Motion vector approaches generally embed data based on the properties exhibited by the motion
vectors, or their associated marcoblocks. Most of the research into motion vector based approaches
deal just motion vectors and their properties. However, as outlined above, Aly’s approach of
selecting candidate vectors based on their macroblocks is just as successful, and offers slightly
better preservation of quality.

2.2.3 Streaming and Real Time

Streaming videos across the internet has become an incredibly popular activity over the last 7 years.
The FLV video format was specifically developed for delivering videos across the internet 2. FLV is
significantly simpler than other formats, and Mozo et al. prove that injection-based steganography
can be used with the FLV file format [MOR+09] (all documented video steganographic techniques
are insertion-based, not injection based). FLV files can contain audio, video and meta blocks, each
indicated by a tag, and the technique involves injecting data at the end of a video block. This
research has proven that FLV files are highly resilient, and can undergo significant modification
without affecting the quality of the video playback. A significant disadvantage with injection-based
steganography is the fact that the file size inflates. However, the FLV format is sufficiently resilient
that video tags can be removed, and the integrity of the video is maintained. As Mozo et al. prove,
it is possible to compensate for the addition of covert data by removing a corresponding number
of video tags, although removing too many video tags has been shown to cause some degradation
to playback quality.

In comparison Liu et al. proposed a real-time steganographic approach that works with the
more complex MPEG-2 file format. Whilst their technique does work, by their own admission it is
a fragile technique [LLLL06] that neglects the resilience aspect of steganography. The strengths,
weaknesses and approaches of the methods proposed by Mozo et al. and Liu et al. vary signi-
ficantly. Injection-based methods (such as Mozo et al.) area easier to detect than substitution
techniques (Liu et al.) purely based on the fact that injection-based methods modify the file-size
– a factor easily noticed without extensive analysis. Given that both methods were specifically
suggested for the purpose of streaming video, we would argue that, Liu et al.’s method would be
preferable as container file size is not increased by the covert data. Nonetheless, any form of data
transmission, including internet streaming is not guaranteed to be free from error; with a fragile
steganographic scheme, the slightest error in transmission could significantly impact the success of
the communication, and with this consideration Liu et al. approach is disadvantaged.

2.3 Steganalysis

Steganalysis is the art and science of detecting messages that have been hidden in container objects
via the application of steganography. In the prisoners’ problem (section 1.2.1) it is the Warden’s
job to use steganalysis to attempt to determine whether a message is present in communication
channels. Just like with steganography, there are numerous different methods for steganalysis,
but from a theoretical stand-point, for steganalysis to be successful, the results only need to
show a higher probability of detection than random guessing [Fri10]. Steganalysis has also been
described as “the process of detecting with high probability and low complexity the presence of
covert communication through innocuous multimedia distribution” [BK04]. It is perhaps worth
noting that steganalysis only needs to detect the presence of a hidden message, the exact process
of determining what the embedded message reads is reserved for the field of forensic steganalysis
[Fri10].

2Other formats such as RealMedia were also developed for internet streaming. FLV has become an accepted
standard for internet streaming, and websites such as YouTube, Hulu, VEVO, Yahoo! Video, metacafe and Reuters
use FLV

9

0 20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

90

ASCII Value

F
re

q
u

e
n

cy

Figure 2.2: ASCII distribution from LSB string be-
fore data is embedded in a PNG image.

0 20 40 60 80 100 120
0

50

100

150

200

250

300

350

400

450

ASCII Value

F
re

q
u

e
n

cy

Figure 2.3: ASCII distribution from LSB string
after data is embedded in a PNG image.

2.3.1 Overview of Steganalysis Techniques

Steganalysis techniques can be split into two different categories:

• Targeted Steganalysis

• Blind Steganalysis

Both targeted and blind steganalysis can use a statistical approach known as statistical steganalysis.

Targeted Steganalysis

Targeted steganalysis can be performed when the Warden knows the algorithm or any aspect of the
stegosystem that is being used. Targeted steganalysis is generally simpler than blind steganalysis,
because the attacker knows some aspects of the mechanics behind the stegosystem.

Example
Let us assume that we have a stegosystem that encodes a message in the LSB of a
palette-based image, in which each pixel is represented by three bytes (one byte for
each RGB component).
A simple targeted attack can be produced to detect this steganographic scheme. By
forming a string of the LSB characters, we can then compare the frequency of ASCII
characters represented in this string. If a message is encoded we will see a spike
corresponding to the frequency of characters that compose the latin alphabet [Col03].
Figures 2.2 and 2.3 illustrate a container before and after the application of the
suggested steganographic scheme.
Compare figures 2.2 and 2.3, notice that in figure 2.3 there is a significant increase
in frequency for ASCII values 32, 65-90 and 97-122. These values reflect the space
character; and upper and lower case A-Z characters. This illustrates that with the
simplest form of LSB encoding it is possible to detect the presence of embedded data
based on ASCII frequency. This technique is akin to the analysis that is used for
substitution ciphers in cryptography. The language of the plain-text (or in this case,
covert data) will have language specific properties reflecting, for example, the fact
that the letter E is the most common letter in the English language [Sch96].

Blind Steganalysis

In the context of blind steganalysis the Warden does not know anything about the steganographic
system that is potentially being used to hide messages in a container object. Blind steganalysis
is significicantly more complex as an ideal steganalysis algorithm should be able to detect every
possible steganographic scheme [Fri10].

Statistical Steganalysis

Detecting the presence of steganography can be a complex issue, especially when a multi-dimensional
container file (such as an image or video) is being used. In reality, the “detection problem” that

10

is encompassed by steganalysis is resolved by representing the container file as a set of numerical
functions [Fri10]. Statistical steganalysis can be used for both blind and targeted steganalysis.

2.3.2 Video Steganalysis

With any stegosystem covert data is embedded in a container file, regardless of whether this is
happening in the spatial or transform domain. Zhang et al. identify that covert data is usually
of a higher-frequency signal in comparison to the rest of the image; with this knowledge they
propose a system for video steganalysis based on aliasing detection. Their method uses Haar
wavelet filters to distinguish between the container and covert data. With a Haar wavelet filter,
a lowpass filter provides an approximation of the container, whereas a highpass is able to extract
the higher frequency covert data. Further statistical analysis is conducted using the Laplacian
distribution [KP03] to distinguish hidden data from the natural container frame. This approach
has been shown to yield good results with a low false-negative and false-positive for the tests
conducted [ZSZ08].

Video steganalysis is a largely unexplored area, with most research centring around stegano-
graphic methods as opposed to steganalysis [CZF12]. Current steganalysis research models videos
as images, whereby the embedding process modifies the Gaussian noise of a frame [BKZ06,ZSZ08,
PDB09, JKH07]. Steganographic approaches that utilize motion vectors for data hiding are be-
coming more and more ubiquitous; therefore this model is likely to become less relevant as the
properties of motion vectors are being exploited.

Cao et al. propose a method for detecting motion vector based encoding for sub-optimal meth-
ods of data hiding. Modification to motion vectors can significantly modify the internal dynamics
of video compression. The fundamental principle behind their research relies on decompressing the
video to the spatial domain before re-compressing. They argue that this decompression and re-
compression cycle is likely to revert the motion vector values back to their unmodified state, where
prediction errors can be used to perform statistical analysis at various stages of the re-compression
process [CZF12].

2.4 Summary

There is a growing range of techniques for embedding data in video container files, many of them
built on the principles of image steganography. For instance, a large number of techniques use
DCT coefficients, as such, these techniques are limited to the MPEG video codec. Recently, more
versatile techniques such as motion vector based approaches have started to emerge and are quickly
becoming commonplace.

Streaming video across the internet has become incredibly popular over the last seven years.
Some of the steganographic approaches that have been discussed were proposed specifically for
“real time video” and “streaming”, however these approaches neglect some aspects which are
contextually important.

Steganalysis is mainly a statistical approach, whereby a container file is represented as a set
of numeric functions. These functions usually model a container file in part, and will attempt to
determine whether a message is embedded within it. The goal of determining the content of a
message is reserved for the field of “forensic steganalysis”.

11

Chapter 3

Requirements and Analysis

The main aim of this project is to develop a video steganography system that fully utilises the
features of a video container file. The proposed system should be secure and practical. Once a
steganographic scheme has been produced, steganalysis will be used to evaluate the performance
of the system.

3.1 Project Overview

Video files contain a mass of data, and are naturally large in size. This vast quantity of data, com-
bined with the popularity of sharing video files makes video one of the more attractive digital media
containers (as opposed to images and audio files). Large file sizes allow for a large steganographic
capacity, and furthermore sharing video files has become so popular that the nature of exchange
video files is not a suspicious or unusual activity that would warrant unnecessary attention.

3.1.1 Container File

A video file comprises two core components: the video stream (a sequence of still image frames)
and the audio stream. Most steganography systems only focus on embedding data in the video
stream and ignore the audio stream completely. With our proposed system both the audio and
video components of the file would be utilised.

The audio stream of the container file can be utilised in two possible ways: it could be used
to store information, or audio stream data could be used with a steganographic key to determine
how the covert data should be encoded. Ideally, the audio stream will contain embedded data.
There is limited research in video steganography utilising the audio stream, therefore there may
be unforeseen complications with encoding data into the audio stream of a video file. Should
this prove untenable we will investigate utilising the audio stream data in conjunction with the
steganographic key to determine the exact encoding of the covert data.

Whilst conducting the literature survey I discovered that a large proportion of the stegano-
graphic techniques in the literature treat a video frame as a still image, and as such, use DCT
methods similar to those used for JPEG images. Whilst this technique works well for MPEG-
based formats, our proposed system will ideally work with newer video formats such as H.264
which supports HD video. Depending on the encoding scheme used the higher resolution (larger
file size) format of HD could allow for a greater steganographic capacity over other lower-quality
resolutions.

3.1.2 Security1

There are a couple of security principles that are worth considering: the notion of security being a
“trade-off”, and Kerckhoff’s principle. Schneier reminds us that security is a “trade-off”, the more
secure a solution the greater the inconvenience it can cause to society. The practical and social
implications of a security system should, he argues, always be a key consideration – producing a
system that has real-world practical application is certainly a desirable requirement.

1For more information, the reader is referred to Schneier’s survey [Sch96], on which this section is partly based.

12

Embedding Process Extraction Process

Encryption

Algorithm

Plain text

�le

Embedding

Algorithm

Key

Steganographic

Container

Decryption

Algorithm

Extraction

Algorithm

Plain text

�le

Key

Figure 3.1: System overview.

Kerckhoff’s principle states that a cryptosystem should remain secure even if everything about
the system (excluding keys) is public knowledge. Whilst this principle is inherent to cryptography it
can be applied to anything in the domain of security. As such, this project should adopt Kerchoff’s
principle and produce a stegosystem that is not reliant on obscurity.

Producing a secure solution to any problem is difficult, and the only true test as to how secure
it is, is time – Cole argues that if flaws and attacks have not been discovered after a few years,
it’s probably secure [Col03]. This argument works well for algorithms and systems that are public
knowledge, but if an organisation’s security system is broken or flawed it is not in their interest to
publicise the fact – this makes it difficult to ascertain the security of proprietary and closed-source
software solutions.

Security of the container file can be increased by combining steganographic techniques with
cryptography so that an encrypted version of the covert data is embedded. Whilst this does not
increase the security of the steganographic technique per se, this does add a layer of security to
the system without detracting from the usability experience of the end user.

3.2 Steganography System

The proposed steganography system (stegosystem) will take a plain textfile, container file and a
password, and then superficially the system will encrypt and embed plaintext file in the container
file. Figure 3.1 gives an overview of how the system is expected to embed and extract covert data.

3.2.1 Encryption and Decryption

Encryption will be performed by an implementation of the Advanced Encryption Standard (AES)
algorithm. The use of AES encryption will add a high level of security to the data being embedded.
AES is used by governments throughout the world [DKR05,CMR06].

3.2.2 Embedding Algorithm

During the embedding process, data needs to be encoded in the frames of the video and the audio
stream. Since it is possible for a video frame to span multiple packets of a video file, the proposed
system will need to read sequential packets of data from the video file to avoid complications that
could arise from seeking to random portions of the video file. As explained in section 2.2.2, data
will be embedded in P- and B- frames by encoding the information in the motion vectors. LSB

13

Figure 3.2: Flowchart illustrating embedding algorithm.

manipulation, or a similar technique will be used to embed data in the audio packets. The flowchart
in figure 3.2 shows how the embedding algorithm should be applied to the container input stream.
Further research and investigation into the data structure of an audio stream will be required to
identify an exact encoding method.

3.2.3 Extraction Algorithm

The extraction algorithm will work in a similar vein. Packets will be read sequentially from the
container file, and the correct extraction method will be used depending on whether the packet
contains a video frame or audio data.

3.3 Evaluation

Evaluation of this project will be performed by using steganalysis. A good implementation of a
steganographic system should be one whose use is difficult to detect.

Evaluating the effectiveness of the proposed solution will not be easy. We will only consider
targeted steganalysis for the purpose of evaluating our proposed steganographic method. Targeted
steganalysis will perform a more rigorous evaluation of the system over blind steganalysis given that
a targetted approach required some knowledge of the stegosystem, Furthermore, using targeted
attacks which exploit knowledge of the stegosystem will demonstrate whether Kerckhoffs’s principle
has been considered.

It is worth noting that performing steganalysis on our own proposed system is not conclusive. It
is certainly feasible that mistakes could be made in the stegosystem, and mirrored mistakes could
be made during the steganalysis. In an attempt to reduce the likelihood of this, our proposed
solution will be evaluated against other researched steganalysis approaches where possible.

14

3.3.1 Steganalysis

In traditional steganalysis fashion the suspected container file should be represented by a simple
model, and by performing statistical analysis we should be able to determine if covert data is
present or not. If a steganalysis method is developed that is able to determine the presence of
covert data more accurately than random guessing then the steganographic technique is not secure.

3.3.2 Iteration

Throughout this project an iterative feedback process will be adopted. The intention is to release
a prototype stegosystem that implements the simplest steganography scheme before iterating to
the next version of the system. Steganalysis will be used to determine the effectiness of the current
version; the feedback will then be used to improve the system in the next iteration.

3.4 Functional Requirements

This section identifies the functional requirements of the system that will be necessary in order to
achieve the goal of this project. The set of requirements are organised into two groups: stegano-
graphy requirements and steganalysis requirements. In each instance requirements are categories
as: essential, desirable and optional extras.

3.4.1 Steganography Requirements

Table 3.1 identifies the functional requirements for the steganography aspects of the system.

Requirement Priority Description
1.1 Essential Read meta information from the video file (bitrate, number

of frames, etc.).
1.2 Essential Iterate and parse video frames.
1.3 Essential Parse audio stream data.
1.4 Essential Implement embedding algorithms that embed data in the

video stream.
1.5 Essential Use AES cryptography to encrypt the covert data before

embedding, and decrypt the covert data after extraction.
1.6 Essential The embedding algorithms should produce an output video

that has no visible or audible different to the original video
file.

1.7 Essential Use a steganographic key to determine the placement of
covert data in the container file.

1.8 Desirable Embedding algorithms should utilise the audio stream.
Preferably for the purpose of data embedding, however,
if this is not possible the audio stream should be used in
conjunction with the steganographic key to determine the
exact encoding of the covert data.

1.9 Optional extra Use user–parameters to influence the embedding (e.g.
maximum steganography capacity/easy to detect or low
steganographic capacity/difficult to detect).

1.10 Optional extra Support the embedding of multiple files in a single video
container file.

1.11 Optional extra Compress the covert data to reduce the quantity of data
that has to be encoded.

Table 3.1: Functional Requirements – Steganography

15

3.4.2 Steganalysis Requirements

Table 3.2 identifies the functional requirements for the steganography aspects of the system.

Requirement Priority Description
2.1 Essential Playback of steganographic video file and original video file

with the ability to step through frames one at a time and
compare the output side-by-side.

2.2 Essential Compute the difference between images represented by two
video frames.

2.3 Essential Compare and analyse motion vectors.
2.4 Desirable Generate histograms of pixel colour frequencies.
2.5 Desirable Audibly compare the sound difference between the original

and encoded container file.
2.6 Desirable Compare data from neighbouring frames to spot uncharac-

teristic changes.

Table 3.2: Functional Requirements – Steganalysis

3.5 Non-functional Requirements

Table 3.3 identifies the non-functional aspects of the proposed steganography system.

Requirement Priority Description
3.1 Essential Runs on Linux operating systems.
3.2 Essential The application should be easy to use.
3.3 Essential The User Interface should be clean, intuitive and unam-

biguous.
3.4 Essential Progress of the embedding and extraction process should

be clearly indicated to the user.
3.5 Essential Embedding algorithms should allow for high steganographic

capacity.
3.6 Desirable Runs on Windows operating systems.
3.7 Desirable The embedding process should be fast.
3.8 Desirable The user can select their preferred embedding scheme.
3.9 Desirable Warn the user is the steganographic capacity of a container

file is too small before embedding covert data.
3.10 Optional extra Display video meta data to the user.

Table 3.3: Non–Functional Requirements

3.6 Summary

In this chapter we have discussed the aims and requirements of this project. Both functional
and non-functional aspects of the system have been outlined in detailed, as well as discussing the
security consideration of our proposed system. Finally, we discuss an iterative development model
in which we use steganalysis to continually evaluate the system between iterations.

16

Chapter 4

Progress

Progress thus far has been slower than intended, but an understanding of the fundamental prin-
ciples of steganography has been established. During the preliminary research for this project two
tools were developed that allowed for data to be embedded in WAV audio files and image files.
Experimental systems for encoding and manipulating video have also been developed, however
video files have a complex structure which has caused some set backs.

4.1 Preliminary Research

Originally starting in Java, two tools were produced that enable the user to embed a file in an
image or audio file.

4.1.1 Audio Tool

The audio tool supports the use of WAV files as containers1. WAV files have a simple file structure
and do not use compression. This tool was capable of reading meta data from the header of the
file, and used this information to encode the plain text file into the LSB of each sample. This
approach was successful. Whilst the steganographic capacity of the file was not great, this method
allowed data to be encoded without a noticeable change in the quality of the audio.

Our technique was evaluated using Shazam2 – a music identification service capable of identify-
ing a music track from the playback of the file. A variety of music tracks were selected, these were
first tested to verify that the service was capable of correctly identifying the tracks. Our audio
tool was then used to embed a draft version of this document (11,000 words) into each audio file.
The files were then re-tested against Shazam, and each time Shazam correctly identified the song.
The source code for this technique is listed in section A.1.2.

4.1.2 Image Tool

The image too 3 is capable of reading files in any popular image format (PNG, GIF, JPEG, BMP)
and using LSB manipulation to embed data in the bytes that represented the RGB colour values
for each pixel. This tool will only output a PNG (palette based) image format, as raw LSB
manipulation techniques do not work with the type of compression employed by image formats
such as JPEG. Figures 4.1 and 4.2 show images before and after data has been embedded. There
is no noticable different between figures 4.1 and 4.2. Using steganalysis it is possible to detect the
presence of a message – figures 2.2 and 2.3 show the distribution of ASCII values represented in
the string of all LSBs for figures 4.1 and 4.2 respectively. The source code for this tool is provided
in code listing A.3.

1An online version of our audio tool is available at http://steganosaur.us/tools/audio. This online tool accepts
a maximum file size of 2MB.

2http://www.shazam.com
3An online version of our image tool is available at http://steganosaur.us/tools/image. This online tool

accepts a maximum file size of 2MB.

17

http://steganosaur.us/tools/audio
http://www.shazam.com
http://steganosaur.us/tools/image

Figure 4.1: Graphic before data is embedded Figure 4.2: Graphic after data is embedded

0 20 40 60 80 100 120
0

5

10

15

20

25

30

ASCII Value

F
re

q
u

e
n

cy

Figure 4.3: ASCII distribution from LSB string after encrypted data is embedded in a PNG image.

4.1.3 Steganalysis Tool

In sect. 2.3.1, an example was given of a steganalysis technique that analyses the frequency of
ASCII values that are represented in the string of all LSBs of the pixel values in a palette-based
image file. Figures 2.2 and 2.3 illustrate how this technique can be used to detect LSB encoding
in a palette-based image. Further experimentation has shown that by encrypting the covert data,
the presence of embedded data is better disguised, as demonstrated in figure 4.3. The distribution
of ASCII values in figure 4.3 is more evenly distributed in comparison to figure 2.3 which shows
the unencrypted distribution. Notice that with the unencrypted distribution there is a significant
spike in the frequency of ASCII values where the space and A-Z characters occur.

Figures 2.2, 2.3 and 4.3 are constructed from data that was collected by our steganalysis tool
– see section B.1 and figures B.6 and B.7.

4.2 Video Manipulation

As with all of the tools described in the previous section, work on video manipulation was started
in Java using a library called Xuggler4. Xuggler is a Java API for video that is based on a native
C library called FFmpeg5. After learning how to extract basic meta data from the video file,
experimentation progressed to video manipulation. Initially, progress was good; figures 4.4, 4.5
and 4.6 show frames from an inversed and watermarked video in comparison to the original. Whilst
this initial work was successful, it was limited in the fact that it only allowed for manipulation of
the frame image within the spatial domain. After some extensive research it was concluded that

4http://www.xuggle.com/xuggler
5http://ffmpeg.org/

18

http://www.xuggle.com/xuggler
http://ffmpeg.org/

Figure 4.4: Original video
frame

Figure 4.5: Visually water-
marked video frame

Figure 4.6: Inverted video
frame

Xuggler can provide an excellent range of high-level functionality, however this project requires
manipulating audio and video data at a much lower-level. Code listing 4.1 shows how Xuggler
made it possible to work with frames in the spatial domain, by exposing a getImage() method
via the IVideoPIctureEvent interface.

1 package us . s teganosaur ;
import com . xuggle . mediatool . ∗ ;

3 import com . xuggle . mediatool . event . IVideoPictureEvent ;
import java . awt . ∗ ;

5 import java . awt . image . BufferedImage ;
pub l i c c l a s s V ideoP i c tu r e Inve r t e r {

7 pub l i c s t a t i c void i n v e r t (f i n a l S t r ing videoFilename , f i n a l S t r ing
outputFilename) {
f i n a l IMediaReader mediaReader = ToolFactory . makeReader (videoFi lename) ;

9 mediaReader . setBufferedImageTypeToGenerate (BufferedImage .TYPE 3BYTE BGR) ;
f i n a l IMediaWriter mediaWriter = ToolFactory . makeWriter (outputFilename ,

mediaReader) ;
11 f i n a l IMediaTool imageMediaTool = new InvertAdapter () ;

mediaReader . addLis tener (imageMediaTool) ;
13 imageMediaTool . addLis tener (mediaWriter) ;

whi l e (mediaReader . readPacket () == n u l l) ;
15 }

p r i v a t e s t a t i c c l a s s InvertAdapter extends MediaToolAdapter {
17 @Override

pub l i c void onVideoPicture (f i n a l IVideoPictureEvent event) {
19 BufferedImage image = event . getImage () ;

Graphics g raph i c s = image . getGraphics () ;
21 f o r (i n t i = 0 ; i < (image . getWidth () ∗ image . getHeight ()) ; i++) {

i n t x = i % image . getWidth () ;
23 i n t y = i / image . getWidth () ;

Color o r i g i n a l C o l o r = new Color (image . getRGB(x , y)) ;
25 Color newColor = new Color (255 − o r i g i n a l C o l o r . getRed () , 255 −

o r i g i n a l C o l o r . getBlue () , 255 − o r i g i n a l C o l o r . getGreen ()) ;
g raph i c s . s e tCo lo r (newColor) ;

27 graph i c s . drawLine (x , y , x , y) ;
}

29 super . onVideoPicture (event) ;
}

31 }
}

Listing 4.1: VideoPictureInverter Java class - inverting a video frame with Xuggler

The inability to continue with Xuggler caused a set back. The range of audio/video manipu-
lation libraries is very limited – most likely due to the complex nature of audio and video files.
Most manipulation libaries act as wrappers for FFmpeg – just like Xuggler. Unfortunately, of
these libraries, Xuggler was the most advanced, so we decided that the best way forwards from
this situation was to switch to using C and interacting directly with the native FFmpeg library -
without going through a wrapper.

19

The FFmpeg API has an AVFrame data structure6 that provides access to low level aspects
of encoding such as the motion vector table and DCT coefficients. This low-level access is not
possible with Xuggler and other FFmpeg wrappers.

With no prior experience of using C or makefiles, the learning curve was steep. Compiler issues,
makefile issues and library linking errors caused significant delay to the project’s progress (see B.2
for our solution). The learning curve has been made significantly steeper by the fact that whilst the
API documentation on how to use FFmpeg is good, there appears to be limited/no code examples
available.

4.2.1 Original Java System

The aforementioned image and audio tools, and the initial video manipulation work were imple-
mented in a single Java application. Screenshots of the GUI can be found in appendix B.1. The
GUI that was developed was not comprehensive of all the functionality that was implemented.
Despite no GUI for their functionality the following classes were also implemented in addition to
the audio and image tools:

• us.steganosaur.steganography.video.LSB
This class housed an unsuccessful LSB manipulation scheme for embedding and extracting
data from a video frame. LSB manipulation is not resilient enough to withstand the lossy
compression used in video (see section 2). This LSB class was based on the image tool
produced during our preliminary research.

• us.steganosaur.VideoPictureInverter
This class inverts all of the colours in a video (see figure 4.6 and code listing 4.1.

• us.steganosaur.VideoWatermarker
This class applies an image watermark to the bottom right of a video (see figure 4.5).

4.2.2 C System

Currently, our focus is on producing a transcode shell7 that iterates over the packets of the input file.
Once this shell is in place work can commence on the new embedding and extraction algorithms.

4.3 Summary

Preliminary research on fundamental steganographic techniques has been undertaken, and suc-
cessful implementations of some of these techniques have been implemented in Java and/or C.
Experimentation with video manipulation was originally conducted with Java and Xuggler, how-
ever limitations of Xuggler meant that this approach was abandoned. Currently, the project focus
is on creating a transcoding skeleton in C which can be built upon once an underlying framework
has been developed.

6http://ffmpeg.org/doxygen/trunk/structAVFrame.html
7The transcode shell will read a video input file packet by packet and will output the exact same video to a

different file using the FFmpeg API to manage the video and audio streams.

20

http://ffmpeg.org/doxygen/trunk/structAVFrame.html

Chapter 5

Conclusion and Project Plan

The current progress achieved so far indicates that working with a complex file format such as video
does have its challenges. Having conducted extensive background reading and experimentation
with fundamental steganographic techniques the next stage in the project is to produce the initial
prototype of the steganographic system. As outlined in detail in section 3, the final system should
comprise the following components:

• AES Cryptosystem An implementation of the AES will be used to encrypt the covert data
before it is encrypted. The embedded data will also need to be decrypted upon extraction.

• Transcoding Mechanism The transcoding mechanism will comprise the main shell of the
system. Typically, transcoding is the conversion of one encoding to another. In this context
we will be reading frames and packets, and modifying the contents before re-encoding them
into the same encoding format.

• Embedding Algorithm The embedding algorithm will determine how the covert data is
embedded in the container file. Specific embedding methods will be required for each type
of data that is being parsed:

– Audio packet method

– Video-frame method

• Extraction Algorithm The extraction algorithm will retreive the embedded data from the
container file. Specific extraction methods will be required for each type of data that is being
parsed:

– Audio packet method

– Video frame method

Initially, a simple prototype system will be developed that implements only core functionality:

• Transcoding Mechanism

• Embedding Algorithm

– Video-frame method

• Extraction Algorithm

– Video-frame method

Once the prototype has been produced an iterative development-steganalysis process will be
started. Each successive iteration will look to improve on flaws highlight by the previous stegana-
lysis attempts. AES and audio stream functionality will also be added during later iterations.

Basic work has been started on the trancoding mechanism. Currently, the system is able to
take an MP4 container file and extract the video stream into a raw video file. Despite the fact that
the transcoding process should convert from a video container file to another video container file,
the process of converting from a video container file to raw video data is nevertheless a reasonable
start.

21

5.1 Project Plan

The Gantt chart in figure 5.1 and 5.2 provides an overview of the project roadmap going forwards.
To summarise:

• Prototyping: 31 December - 23 January
Develop a prototype system that includes a basic embedding an extraction algorithm

• Iteration Phase: 24 January - 13 March
Each iteration phase will last 6 days, with time split equally between system development
and enhancement.

• Testing: 14 March - 15 March
Where possible, testing should be performed as the system is being developed. Where possible
the Check1 unit testing framework should be used. Over these two days in-depth testing of
the entire system should also take place.

• Evaluate Project: 18 March - 22 March
Evaluate the success of the project in preparation for the final report.

• Write Report: 14 March - 1 May
Write the final report for the deadline on 1 May.

• Produce Poster: 1 May - 8 May
Prepare poster for the poster session on 8 May.

1http://check.sourceforge.net/

22

http://check.sourceforge.net/

W
ee
k

Ja
n
u
ar
y

F
eb
ru
ar
y

M
ar
ch

31
D
ec

7
Ja
n

14
Ja
n

21
Ja
n

28
Ja
n

4
F
eb

11
F
eb

18
F
eb

25
F
eb

4
M
ar

M
T

W
T

F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F

P
ro

to
ty

p
e

T
ra

n
sc

o
d

e
S

y
st

em

E
m

b
ed

d
in

g
A

lg
or

it
h

m

E
x
tr

ac
ti

on
A

lg
or

it
h

m

A
E

S
C

ry
p

to
sy

st
em

In
it

ia
l

S
te

ga
n

al
y
si

s

It
e
ra

ti
o
n

1
S

te
ga

n
og

ra
p

h
y

It
er

at
io

n

S
te

ga
n

al
y
si

s

It
e
ra

ti
o
n

2
S

te
ga

n
og

ra
p

h
y

It
er

at
io

n

S
te

ga
n

al
y
si

s

It
e
ra

ti
o
n

3
S

te
ga

n
og

ra
p

h
y

It
er

at
io

n

S
te

ga
n

al
y
si

s

It
e
ra

ti
o
n

4
S

te
ga

n
og

ra
p

h
y

It
er

at
io

n

S
te

ga
n

al
y
si

s

It
e
ra

ti
o
n

5
S

te
ga

n
og

ra
p

h
y

It
er

at
io

n

S
te

ga
n

al
y
si

s

F
ig

u
re

5
.1

:
G

a
n
tt

C
h

a
rt

-
P

a
rt

1
o
f

2

23

W
ee
k

M
ar
ch

A
pr
il

M
ay

4
M
ar

11
M
ar

18
M
ar

25
M
ar

1
A
pr

8
A
pr

15
A
pr

22
A
pr

29
A
pr

6
M
ay

M
T

W
T

F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F
M

T
W

T
F

It
e
ra

ti
o
n

6
S

te
ga

n
og

ra
p

h
y

It
er

at
io

n

S
te

ga
n

al
y
si

s

T
e
st
in
g

T
es

t
S

of
tw

ar
e

C
o
n
c
lu
si
o
n

E
va

lu
at

e
P

ro
je

ct

W
ri

te
F

in
al

R
ep

or
t

P
os

te
r

S
es

si
on

F
ig

u
re

5
.2

:
G

a
n
tt

C
h

a
rt

-
P

a
rt

2
o
f

2

24

Bibliography

[AFJK+10] A. K. Al-Frajat, H. A. Jalab, Z. M. Kasirun, A. A. Zaiden, and B. B. Zaiden. Hiding
Data in Video File: An Overview. Journal of Applied Sciences, 10:1644–1649, 2010.

[Aly11] H. A. Aly. Data Hiding in Motion Vectors of Compressed Video Based on Their
Associated Prediction Error. Information Forensics and Security, IEEE Transactions
on, 6(1):14–18, march 2011.

[And96] R. Anderson. Stretching the Limits of Steganography. IEEE Journal of Selected Areas
in Communications, 16:474–481, 1996.

[Bac40] F. Bacon. Of the advancement and proficiencie of learning, or, The partitions of
sciences. Leon Lichfield, Oxford, for R. Young and E. Forest, 1640.

[BDBG08] S. Braci, C. Delpha, R. Boyer, and G. L. Guelvouit. Informed Stego-schemes in Active
Warden Context: Tradeoff between Undetectability, Capacity and Resistance, 2008.

[BK04] U. Budhia and D. Kundur. Digital Video Steganalysis Exploiting Collusion Sensitivity.
In Edward M. Carapezza, editor, Proc. SPIE Sensors, Command, Control, Commu-
nications, and Intelligence (C3I) Technologies for Homeland Security and Homeland
Defense, volume 5403, pages 210–221, Orlando, Florida, 2004.

[BKZ06] U. Budhia, D. Kundur, and T. Zourntos. Digital Video Steganalysis Exploiting Statist-
ical Visibility in the Temporal Domain. IEEE Transactions on Information Forensics
and Security, Vol. 1, No. 4, 1(4):502–516, 2006.

[CM99] J. J. Chae and Manjunath. Data hiding in Video. In 6th IEEE International Confer-
ence on Image Processing (ICIP’99), volume 1, pages 311–315, Oct 1999.

[CMR06] C. Cid, S. Murphy, and M. Robshaw. Algebraic Aspects of Advanced Encryption
Standards. Springer, 2006.

[Col03] E. Cole. Hiding in Plain Sight: Steganography and the Art of Covert Communication.
Wiley Publishing, Inc., 2003.

[Cra96] S. Craver. On Public-key Steganography in the Presence of an Active Warden. In
Information Hiding, Second International Workshop, pages 355–368. Springer, 1996.

[CZF12] Y. Cao, X. Zhao, and D. Feng. Video Steganalysis Exploiting Motion Vector Reversion-
Based Features. IEEE Signal Processing Letters, 19:35–38, 2012.

[DKR05] H. Dobbertin, L. Knudsen, and M. Robshaw. The Cryptanalysis of the AES - A Brief
Survey. In Hans Dobbertin, Vincent Rijmen, and Aleksandra Sowa, editors, Advanced
Encryption Standard - AES, volume 3373 of Lecture Notes in Computer Science, pages
1–10. Springer Berlin Heidelberg, 2005.

[EKZZ09] M. E. Eltahir, L. M. Kiah, B. B. Zaidan, and A. A. Zaidan. High Rate Video Stream-
ing Steganography. In Proceedings of the 2009 International Conference on Future
Computer and Communication, ICFCC ’09, pages 672–675, Washington, DC, USA,
2009. IEEE Computer Society.

25

[FC06] D. Fang and L. Chang. Data hiding for digital video with phase of motion vector.
In Circuits and Systems, 2006. ISCAS 2006. Proceedings. 2006 IEEE International
Symposium on, pages 1422–1425, may 2006.

[FGS05] J. Fridrich, M. Goljan, and D. Soukal. Perturbed quantization steganography. Multi-
media Systems, 11(2):98–107, 2005.

[Fri10] J. Fridrich. Steganography in Digital Media: Principles, Algorithms and Applications.
Cambridge University Press, 2010.

[Her96] Herodotus. The Histories. Penguin Books, 1996.

[HLvR+00] A. Hanjalic, G. C. Langelaar, P. M. B. van Roosmalen, J. Biemond, and R. L. La-
gendijk. Image and Video Databases: Restoration, Watermarking and Retrieval. Ad-
vances in Image Communication. Elsevier Science, 2000.

[IM04] IBM and Microsoft. Multimedia Programming Interface and Data Specific-
ations 1.0. http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/

Docs/riffmci.pdf, 2004.

[JDJ03] N. F. Johnson, Z. Duric, and S. Jajodia. Information Hiding: Steganography and
Watermarking - Attacks and Countermeasures (Advances in Information Security).
Kluwer Academic Publishers, 2003.

[JKH07] J. S. Jainsky, D. Kundur, and R. Halverson. Towards digital video steganalysis using
asymptotic memoryless detection. In Proceedings for the 9th workshop on multimedia
& security, pages 161–168. ACM, 2007.

[JZZ09] H. A. Jalab, A. A. Zaidan, and B. B. Zaidan. Frame Selected Approach for Hiding
Data within MPEG Video Using Bit Plane Complexity Segmentation. Journal of
Computing, 1(1):108–113, 2009.

[Kah67] D. Kahn. The codebreakers: the story of secret writing. Macmillan, 1967.

[KDR06] Y. Kim, Z. Duric, and D. Richards. Modified Matrix Encoding Technique for Min-
imal Distortion Steganography. In Information Hiding, volume 4437, pages 314–327.
Springer, 2006.

[KK10] V. Kumar and D. Kumar. Performance evaluation of DWT based image stegano-
graphy. In IEEE International Advance Computing Conference, pages 223–238, 2010.

[KP03] T. J. Kozubowski and K. Podgrski. Log-Laplace distributions. Internat. Math. J,
3:467–495, 2003.

[LLLL06] B. Liu, F. Liu, B. Lu, and X. Luo. Real-time steganography in compressed video. In
Proceedings of the 2006 international conference on Multimedia Content Represent-
ation, Classification and Security, MRCS’06, pages 43–48, Berlin, Heidelberg, 2006.
Springer-Verlag.

[MOR+09] A. J. Mozo, M. E. Obien, C. J. Rigor, D. F. Rayel, K. Chua, and G. Tangonan.
Video steganography using Flash Video (FLV). In Instrumentation and Measurement
Technology Conference, 2009. I2MTC ’09. IEEE, pages 822–827, may 2009.

[Muk11] J. Mukhopadhyay. Image and Video Processing in the Compressed Domain. CRC
Press, 2011.

[NFNK04] H. Noda, T. Furuta, M. Niimi, and E. Kawaguchi. Application of BPCS steganography
to wavelet compressed video. In Image Processing, 2004. ICIP ’04. 2004 International
Conference on, volume 4, pages 2147–2150, oct. 2004.

26

http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf
http://www-mmsp.ece.mcgill.ca/Documents/AudioFormats/WAVE/Docs/riffmci.pdf

[PDB09] V. Pankajakshan, G. Doerr, and P. K. Bora. Detection of motion-incoherent com-
ponents in video streams. IEEE Transactions on Information Forensics and Security,
4:49–58, 2009.

[Pro01] N. Provos. Defending Against Statistical Steganalysis. In 10th USENIX Security
Symposium, pages 323–335, 2001.

[PS12] B. Prabhakaran and D. Shanthi. A New Cryptic Steganographic Approach using Video
Steganography. International Journal of Computer Applications, 49(7):19–23, 2012.

[Rab04] K. Rabah. Steganography - The Art of Hiding Data. Information Technology Journal,
3(3), 2004.

[RDB96] J. J. K. Ó Ruanaidh, W. J. Dowling, and F. M. Boland. Watermarking digital im-
ages for copyright protection. Vision, Image and Signal Processing, IEE Proceedings,
143(4):250–256, aug 1996.

[SA10] S. Singh and G. Agarwal. Hiding image to video: A new approach of LSB replacement.
Internataional Journal of Engineering Science and Technology, 2(12):6999–7003, 2010.

[Sal03] P. Sallee. Model-Based Steganography. In International Workshop on Digital Water-
marking, volume 2939, pages 154–167. Springer, 2003.

[Sal05] P. Sallee. Model–Based Methods For Steganography And Steganalysis. International
Journal of Image and Graphics, 5(1):167–189, 2005.

[Sch96] B. Schneier. Applied Cryptography: Protocols, Algorithms, and Source Code in C.
John Wiley and Sons, Inc., 1996.

[Sha12] T. Shanableh. Matrix encoding for data hiding using multilayer video coding and
transcoding solutions. Signal Processing: Image Communication, 27(9), 2012.

[Sim83] G. J. Simmons. The Prisoners’ Problem and the Subliminal Channel. In CRYPTO,
pages 51–67, 1983.

[Tac90] A. Tacticus. How to survive under siege. Oxford: Clarendon, 1990.

[Wes01] A. Westfeld. F5 – a steganographic algorithm: High capacity despite better stegana-
lysis. In 4th International Workshop on Information Hiding, pages 289–302. Springer-
Verlag, 2001.

[WJN10] E. Walia, P. Jain, and N. Navdeep. An Analysis of LSB & DCT based Steganography.
Global Journal of Computer Science and Technology, 10(1):4–8, 2010.

[WW98] A. Westfeld and G. Wolf. Steganography in a Video Conferencing System. In In-
formation Hiding, volume 1525 of Lecture Notes in Computer Science, pages 32–47.
Springer Berlin Heidelberg, 1998.

[XPZ06] C. Xu, X. Ping, and T. Zhang. Steganography in Compressed Video Stream. In In-
novative Computing, Information and Control, 2006. ICICIC ’06. First International
Conference on, volume 1, pages 269–272, 30 2006-sept. 1 2006.

[ZK95] J. Zhao and E. Koch. Embedding Robust Labels into Images for Copyright Protection.
In Klaus Brunnstein and Peter Paul Sint, editors, Intellectual Property Rights and
New Technologies, Proceedings of the KnowRight 95 Conference, 21.-25.8.1995, Wien,
Austria, volume 82 of books@ocg.at, pages 242–251. Austrian Computer Society, 1995.

[ZSZ08] C. Zhang, Y. Su, and C. Zhang. Video steganalysis based on aliasing detection.
Electronic Letters, 44(13), 2008.

27

Appendix A

Fundamental Steganography Tech-
niques

Whilst undertaking preliminary research for this project we experimented with basic Image and
Audio steganographic techniques. This section details some of our findings and the tools we
produced during this preliminary phase.

A.1 Audio Steganography

As with video, there are numerous audio formats, each with their own specific properties. WAV
(Waveform Audio File Format) is an uncompressed audio format. Naturally, uncompressed formats
are a lot easier to work with in comparison to compressed formats such as MP3.

During our exploration of Audio Steganography we implemented a Steganography tool capable
of encoding data in a WAV file, this tool encoded data in the LSB of each sample. This is the
simplest and most discreet substituion-based steganographic technique for audio files.

A.1.1 WAV File Format

The table below outlines the structure of a WAV file. A WAV file is split into a header and data
portion. The first 44 bbytes of a WAV file contain the fixed–length header [IM04].

Position Description Example Value
01-04 Indicate that the file is a RIFF file. ”‘RIFF”’
05-08 Size of the entire file. (Usually specified once the file has

been created)
integer

09-12 File type ”‘WAVE”’
13-16 Format chunk marker, includes trailing null character. ”‘fmt ”‘
17-20 Size of format chunk 16
21-22 Type of format 1
23-24 Number of channels 2
25-28 Sample rate 44100
29-32 Byte rate = (SampleRate * NoChannels * BitsPerSample)

/ 8
176400

33-34 Block alignment = (NoChannels * BitsPerSample) / 8 4
35-36 Bits per sample 16
37-40 Data section indicator ”‘data”’
41-44 Size of the data section integer

Table A.1: WAV File Format

28

A.1.2 Source Code

C

Code listing A.1 contains the source code for the Java version of the audio steganography tool.
This tool can encode data into the LSB of each sample.
Note: The C version does not support AES cryptography.

#inc lude <s t d i o . h>
2 #inc lude <s t d l i b . h>

#inc lude ” wav audio steganography . h”
4 i n t WAV HEADER SIZE = 44 ;

6 i n t f i l e e x i s t s (const char ∗ f i leName) {
FILE ∗ f ;

8 f = fopen (fi leName , ” r ”) ;
i f (f) {

10 r e turn 1 ;
}

12 r e turn 0 ;
}

14

16 i n t c h a r s t o i n t (const char ∗ chars , i n t charsLen) {
i n t intVal = 0 ;

18 i n t i ;
f o r (i = 0 ; i < charsLen ; i++) {

20 in tVal = (intVal << 8) + chars [i] ;
}

22 r e turn intVal ;
}

24

char ∗ i n t t o c h a r s (i n t intVal , char ∗ charS i z e) {
26 // char charS i z e [4] ;

cha rS i z e [0] = (char) (intVal >> 24) ;
28 charS i z e [1] = (char) (intVal >> 16) ;

charS i z e [2] = (char) (intVal >> 8) ;
30 charS i z e [3] = (char) intVal ;

r e turn charS i z e ;
32 }

34 char ∗ encode chars (char ∗ conta iner , i n t conta ine rS i z e , const char ∗ toEncode , i n t
encodeLength , i n t bytesPerSample , i n t o f f s e t) {

i n t i , j ;
36 f o r (i = 0 ; i < encodeLength ; i++) {

i n t byteValue = toEncode [i] ;
38 // Loop through each b i t o f the byte

f o r (j = 7 ; j >= 0 ; j−−, ++o f f s e t) {
40 // Get the b i t va lue

i n t b i t = (byteValue >> j) & 1 ;
42 // Set LSB to b i t

i n t pos = (o f f s e t + 1) ∗ bytesPerSample ;
44 conta ine r [pos] = ((conta ine r [pos] & 0xFE) | b i t) ;

}
46 }

r e turn conta ine r ;
48 }

50 void wav stego encode (const char ∗ containerFn , const char ∗ pla intextFn , const char ∗
outputFn) {

52 FILE ∗ c o n t a i n e r F i l e ;
FILE ∗ p l a i n t e x t F i l e ;

54 FILE ∗ outputF i l e ;

56 // Open conta ine r f i l e
c o n t a i n e r F i l e = fopen (containerFn , ” r ”) ;

29

58

// Get conta ine r f i l e s i z e and read e n t i r e data
60 f s e e k (c o n t a i n e r F i l e , 0 , SEEK END) ;

i n t c o n t a i n e r S i z e = f t e l l (c o n t a i n e r F i l e) ;
62 f s e e k (c o n t a i n e r F i l e , 0 , SEEK SET) ;

char ∗ conta inerData ;
64 conta inerData = c a l l o c (1 , c o n t a i n e r S i z e + 1) ;

f r ead (containerData , con ta ine rS i z e , 1 , c o n t a i n e r F i l e) ;
66

// Bi t s per sample c h a r a c t e r s
68 f s e e k (c o n t a i n e r F i l e , 32 , SEEK SET) ;

char ∗ bpsChars ;
70 bpsChars = c a l l o c (1 , 3) ;

f r ead (bpsChars , 2 , 1 , c o n t a i n e r F i l e) ;
72 i n t bytesPerSample = c h a r s t o i n t (bpsChars , 2) ;

74 // Read p l a in t ext f i l e data and f i l e s i z e
p l a i n t e x t F i l e = fopen (pla intextFn , ” r ”) ;

76 f s e e k (p l a i n t e x t F i l e , 0 , SEEK END) ;
i n t p l a i n t e x t S i z e = f t e l l (p l a i n t e x t F i l e) ;

78 f s e e k (p l a i n t e x t F i l e , 0 , SEEK SET) ;
char ∗ p l a i n t e x t ;

80 p l a i n t e x t = c a l l o c (1 , p l a i n t e x t S i z e + 1) ;
f r ead (p l a in t ex t , p l a i n t e x t S i z e , 1 , p l a i n t e x t F i l e) ;

82

// Encode message l ength
84 char ∗ messageLength ;

i n t t o c h a r s (p l a i n t e x t S i z e , messageLength) ;
86

conta inerData = encode chars (containerData , con ta ine rS i z e , messageLength , 4 ,
bytesPerSample , 0) ;

88 conta inerData = encode chars (containerData , con ta ine rS i z e , p l a in t ex t ,
p l a i n t e x t S i z e , bytesPerSample , 32) ;

90 // Output modi f i ed conta ine r data
outputF i l e = fopen (outputFn , ”w”) ;

92 f w r i t e (containerData , con ta ine rS i z e , 1 , outputF i l e) ;
f c l o s e (outputF i l e) ;

94

f c l o s e (p l a i n t e x t F i l e) ;
96 f c l o s e (c o n t a i n e r F i l e) ;
}

98

void wav stego decode (const char ∗ containerFn , const char ∗ outputFn) {
100

FILE ∗ c o n t a i n e r F i l e ;
102 FILE ∗ outputF i l e ;

104 c o n t a i n e r F i l e = fopen (containerFn , ” r ”) ;

106 // Get conta ine r f i l e s i z e and read e n t i r e data
f s e e k (c o n t a i n e r F i l e , 0 , SEEK END) ;

108 i n t c o n t a i n e r S i z e = f t e l l (c o n t a i n e r F i l e) ;
f s e e k (c o n t a i n e r F i l e , 0 , SEEK SET) ;

110 char ∗ conta inerData ;
conta inerData = c a l l o c (1 , c o n t a i n e r S i z e + 1) ;

112 f r e ad (containerData , con ta ine rS i z e , 1 , c o n t a i n e r F i l e) ;

114 // Bi t s per sample c h a r a c t e r s
f s e e k (c o n t a i n e r F i l e , 32 , SEEK SET) ;

116 char ∗ bpsChars ;
bpsChars = c a l l o c (1 , 3) ;

118 f r e ad (bpsChars , 2 , 1 , c o n t a i n e r F i l e) ;
i n t bytesPerSample = c h a r s t o i n t (bpsChars , 2) ;

120

i n t l ength = 0 ;
122 i n t o f f s e t = 32 ;

30

i n t i ;
124

// Determine the l ength o f the embedded message by read ing
126 // the LSBs o f the f i r s t 32 bytes .

f o r (i = 0 ; i < 32 ; i++) {
128 i n t pos = ((i + 1) ∗ bytesPerSample) ;

l ength = (length << 1) | (conta inerData [pos] & 1) ;
130 }

132 // Try and check f o r a v a l i d l ength − the user may try and decode
// a f i l e that does not have a message encoded in i t .

134 i f (l ength < 1 | | (l ength + 32) > c o n t a i n e r S i z e) {
p r i n t f (” Error : i n v a l i d l ength o f encoded data (%d) \n” , l ength) ;

136 r e turn ;
}

138

// Extract message
140 char ∗ message ;

f o r (i = 0 ; i < l ength ; ++i) {
142 i n t j ;

f o r (j = 0 ; j < 8 ; ++j , ++o f f s e t) {
144 i n t pos = ((o f f s e t + 1) ∗ bytesPerSample) ;

message [i] = (char) ((message [i] << 1) | (conta inerData [pos] & 1)) ;
146 }

}
148

// Output f i l e
150 outputF i l e = fopen (outputFn , ”w”) ;

f w r i t e (message , length , 1 , outputF i l e) ;
152 f c l o s e (outputF i l e) ;

154 f c l o s e (c o n t a i n e r F i l e) ;
}

Listing A.1: C version of the audio steganography tool

Java

Code listing A.2 contains the source code for the Java version of the audio steganography tool.
This tool can encode data into the LSB of each sample.

1 package us . s teganosaur . steganography ;

3 import us . s teganosaur . cryptography .AES;
import us . s teganosaur . u t i l s . F i l e U t i l s ;

5 import us . s teganosaur . u t i l s . U t i l s ;

7 import java . i o . F i l e ;
import java . i o . Fi le InputStream ;

9 import java . i o . FileOutputStream ;

11 pub l i c c l a s s AudioSteg {

13 p r i v a t e s t a t i c f i n a l i n t WAV HEADER SIZE = 44 ;

15 p r i v a t e s t a t i c byte [] encodeBytes (byte [] conta iner , byte [] toEncode , i n t
bytesPerSample , i n t o f f s e t) {
// Check that the message i s not too long f o r the conta ine r

17 i f (((toEncode . l ength + o f f s e t) ∗ bytesPerSample) > ((con ta ine r . l ength −
WAV HEADER SIZE) / bytesPerSample)) {
new Throwable (new Exception (”Message too long f o r conta ine r ”)) ;

19 }
f o r (i n t i = 0 ; i < toEncode . l ength ; i++) {

21 i n t byteValue = toEncode [i] ;
// Loop through each b i t o f the byte

23 f o r (i n t j = 7 ; j >= 0 ; j−−,++o f f s e t) {

31

// Get the b i t va lue
25 i n t b i t = (byteValue >> j) & 1 ;

// Set LSB to b i t
27 i n t pos = ((o f f s e t + 1) ∗ bytesPerSample) ; //− 1 ;

conta ine r [pos] = (byte) ((con ta ine r [pos] & 0xFE) | b i t) ;
29 }

}
31 r e turn conta ine r ;

}
33

pub l i c s t a t i c void encode (S t r ing inputF i l e , S t r ing c o n t a i n e r F i l e , S t r ing
outputFi le , S t r ing password) {

35

// Load input message , encrypt and convert to bytes .
37 byte [] message = n u l l ;

t ry {
39 message = F i l e U t i l s . getBytes (i n p u t F i l e) ;

i f (! password . isEmpty ()) {
41 message = AES. encrypt (message , password) ;

}
43 } catch (Exception ex) {

System . out . p r i n t l n (”Ex1 : ” + ex . getMessage ()) ;
45 }

47 Fi leInputStream containerStream = n u l l ;
FileOutputStream outputStream = n u l l ;

49 t ry {
// Create f i l e streams

51 conta inerStream = new Fi leInputStream (c o n t a i n e r F i l e) ;
outputStream = new FileOutputStream (outputF i l e) ;

53

// Copy the header to the output f i l e
55 byte [] wavHeader = new byte [3 2] ;

conta inerStream . read (wavHeader) ;
57 outputStream . wr i t e (wavHeader) ;

59 // Get b i t s per sample
byte [] bitsPerSample = new byte [2] ;

61 conta inerStream . read (bitsPerSample) ;
outputStream . wr i t e (bitsPerSample) ;

63

wavHeader = new byte [1 0] ;
65 conta inerStream . read (wavHeader) ;

outputStream . wr i t e (wavHeader) ;
67

// Read remainder o f con ta ine r
69 i n t bytesToRead = (i n t) new F i l e (c o n t a i n e r F i l e) . l ength () −

WAV HEADER SIZE;
byte [] conta inerBytes = new byte [bytesToRead] ;

71 conta inerStream . read (conta inerBytes , 0 , conta inerBytes . l ength) ;

73 i n t numBitsPerSample = U t i l s . bytesToInteger (bitsPerSample) ;
i n t numBytesPerSample = numBitsPerSample / 8 ;

75

// Encode s i z e o f message
77 byte [] messageLength = U t i l s . integerToBytes ((i n t) message . l ength) ;

conta inerBytes = encodeBytes (conta inerBytes , messageLength ,
numBytesPerSample , 0) ;

79

// Encode message
81 conta inerBytes = encodeBytes (conta inerBytes , message , numBytesPerSample

, 32) ;

83 // Output
outputStream . wr i t e (conta inerBytes) ;

85

} catch (Exception ex) {

32

87 System . out . p r i n t l n (”Ex2 : ” + ex . getMessage ()) ;
ex . pr intStackTrace () ;

89 } f i n a l l y {
t ry {

91 i f (conta inerStream != n u l l) {
conta inerStream . c l o s e () ;

93 }
i f (outputStream != n u l l) {

95 outputStream . c l o s e () ;
}

97 } catch (Exception ex) {

99 }
}

101

}
103

pub l i c s t a t i c void decode (S t r ing inputF i l e , S t r ing outputFi le , S t r ing password)
{

105

Fi leInputStream inputStream = n u l l ;
107 FileOutputStream outputStream = n u l l ;

t ry {
109 // Create f i l e streams

inputStream = new Fi leInputStream (i n p u t F i l e) ;
111 outputStream = new FileOutputStream (outputF i l e) ;

113 // Copy the header to the output f i l e
byte [] wavHeader = new byte [3 2] ;

115 inputStream . read (wavHeader) ;

117 // Get b i t s per sample
byte [] bitsPerSample = new byte [2] ;

119 inputStream . read (bitsPerSample) ;

121 wavHeader = new byte [1 0] ;
inputStream . read (wavHeader) ;

123

// Read remainder o f con ta ine r
125 i n t bytesToRead = (i n t) new F i l e (i n p u t F i l e) . l ength () − WAV HEADER SIZE;

byte [] hiddenBytes = new byte [bytesToRead] ;
127 inputStream . read (hiddenBytes , 0 , hiddenBytes . l ength) ;

129 i n t numBitsPerSample = U t i l s . bytesToInteger (bitsPerSample) ;
i n t numBytesPerSample = numBitsPerSample / 8 ;

131

// Decode message s i z e
133 i n t l ength = 0 ;

i n t o f f s e t = 32 ;
135 f o r (i n t i = 0 ; i < 32 ; i++) {

i n t pos = ((i + 1) ∗ numBytesPerSample) ; //− 1 ;
137 l ength = (length << 1) | (hiddenBytes [pos] & 1) ;

}
139

// Create array f o r conta in ing message
141 byte [] message = new byte [l ength] ;

143 // I t e r a t e bytes o f message
f o r (i n t i = 0 ; i < l ength ; ++i) {

145 // I t e r a t e each b i t o f byte
f o r (i n t j = 0 ; j <8; ++j , ++o f f s e t) {

147 i n t pos = ((o f f s e t + 1) ∗ numBytesPerSample) ; //− 1 ;
message [i] = (byte) ((message [i] << 1) | (hiddenBytes [pos] & 1))

;
149 }

}
151

33

t ry {
153 i f (! password . isEmpty ()) {

message = AES. decrypt (message , password) ;
155 }

FileOutputStream f o s = new FileOutputStream (outputF i l e) ;
157 f o s . wr i t e (message , 0 , message . l ength) ;

f o s . c l o s e () ;
159 } catch (Exception ex) {

System . out . p r i n t (”An e r r o r occurred attempting to decode your
message . I n v a l i d password ?”) ;

161 }

163 } catch (Exception ex) {
System . out . p r i n t l n (”Ex2 : ” + ex . getMessage ()) ;

165 ex . pr intStackTrace () ;
} f i n a l l y {

167 t ry {
i f (inputStream != n u l l) {

169 inputStream . c l o s e () ;
}

171 i f (outputStream != n u l l) {
outputStream . c l o s e () ;

173 }
} catch (Exception ex) {

175

}
177 }

179 }

181 pub l i c s t a t i c S t r ing i n s p e c t (S t r ing c o n t a i n e r F i l e) {
r e turn U t i l s . humanReadableSize (in spec tByte s (c o n t a i n e r F i l e)) ;

183 }

185 pub l i c s t a t i c long inspec tByte s (S t r ing c o n t a i n e r F i l e) {
t ry {

187 long f i l e L e n g t h = new F i l e (c o n t a i n e r F i l e) . l ength () ;

189

Fi leInputStream conta inerStream = new Fi leInputStream (c o n t a i n e r F i l e) ;
191

// Get b i t s per sample
193 byte [] bitsPerSample = new byte [2] ;

conta inerStream . sk ip (32) ;
195 conta inerStream . read (bitsPerSample) ;

i n t bytesPerSample = U t i l s . bytesToInteger (bitsPerSample) ;
197

i n t byteCapacity = (((i n t) f i l e L e n g t h) − WAV HEADER SIZE) /
bytesPerSample ;

199 // Remove 4 bytes needed to i n d i c a t e message s i z e
byteCapacity −= 4 ;

201

r e turn byteCapacity ;
203

} catch (Exception ex) {
205 ex . pr intStackTrace () ;

r e turn 0 ;
207 }

}
209 }

Listing A.2: Java version of the audio steganography tool

34

A.2 Image Steganography

In addition to an audio steganography tool we also produced an image steganography tool that is
capable of taking any popular image format and encoding data into the LSB of pixel colours. Our
tool only supports outputting of encoded images to the PNG palette-based format. The source
code for this tool is provided in code listing A.3.

1 package us . s teganosaur . steganography ;

3 import us . s teganosaur . cryptography .AES;
import us . s teganosaur . u t i l s . F i l e U t i l s ;

5 import us . s teganosaur . u t i l s . U t i l s ;

7 import javax . imageio . ImageIO ;
import java . awt . image . BufferedImage ;

9 import java . awt . image . DataBufferByte ;
import java . i o . ∗ ;

11 import java . awt . Graphics2D ;

13 pub l i c c l a s s ImageSteg {

15 p r i v a t e s t a t i c byte [] encodeBytes (byte [] conta iner , byte [] toEncode , i n t
o f f s e t) {
// Check that the message i s not too long f o r the conta ine r

17 i f ((toEncode . l ength + o f f s e t) > conta ine r . l ength) {
new Throwable (new Exception (”Message too long f o r conta ine r ”)) ;

19 }
f o r (i n t i = 0 ; i < toEncode . l ength ; i++) {

21 i n t byteValue = toEncode [i] ;
// Loop through each b i t o f the byte

23 f o r (i n t j = 7 ; j >= 0 ; j−−,++o f f s e t) {
// Get the b i t va lue

25 i n t b i t = (byteValue >> j) & 1 ;
// Set LSB to b i t

27 conta ine r [o f f s e t] = (byte) ((con ta ine r [o f f s e t] & 0xFE) | b i t) ;
}

29 }
r e turn conta ine r ;

31 }

33 pub l i c s t a t i c void encode (S t r ing inputF i l e , S t r ing c o n t a i n e r F i l e , S t r ing
outputFi le , S t r ing password) {

35 // Load input message , encrypt and convert to bytes .
byte [] message = n u l l ;

37 t ry {
message = F i l e U t i l s . getBytes (i n p u t F i l e) ;

39 i f (! password . isEmpty ()) {
message = AES. encrypt (message , password) ;

41 }
} catch (Exception ex) {

43 System . out . p r i n t l n (”Ex1 : ” + ex . getMessage ()) ;
}

45

// Load c o n t a i n e r F i l e i n to BufferImage
47 BufferedImage conta ine r = n u l l ;

t ry {
49 BufferedImage containerImage = ImageIO . read (new F i l e (c o n t a i n e r F i l e)) ;

c on ta ine r = new BufferedImage (conta inerImage . getWidth () , conta inerImage
. getHeight () , BufferedImage .TYPE 3BYTE BGR) ;

51 Graphics2D graph i c s = conta ine r . c r eateGraph ic s () ;
g raph i c s . drawRenderedImage (containerImage , n u l l) ;

53 graph i c s . d i spo s e () ;
} catch (Exception ex) {

55 System . out . p r i n t l n (”Ex2 : ” + ex . getMessage ()) ;
}

35

57

// Container f i l e as bytes
59 byte [] conta inerBytes = U t i l s . bufferedImageToBytes (conta ine r) ;

// Message l ength as bytes
61 byte [] messageLength = U t i l s . integerToBytes ((i n t) message . l ength) ;

63 encodeBytes (conta inerBytes , messageLength , 0) ;
encodeBytes (conta inerBytes , message , 32) ;

65

t ry {
67 ImageIO . wr i t e (conta iner , ”png” ,new F i l e (outputF i l e)) ;

} catch (Exception ex) {
69 System . out . p r i n t l n (”Ex3 : ” + ex . getMessage ()) ;

}
71

}
73

pub l i c s t a t i c void decode (S t r ing inputF i l e , S t r ing outputFi le , S t r ing password)
{

75

// Load c o n t a i n e r F i l e i n to BufferImage
77 BufferedImage conta ine r = n u l l ;

t ry {
79 System . out . p r i n t l n (i n p u t F i l e) ;

BufferedImage containerImage = ImageIO . read (new F i l e (i n p u t F i l e)) ;
81 conta ine r = new BufferedImage (conta inerImage . getWidth () , conta inerImage

. getHeight () , BufferedImage .TYPE 3BYTE BGR) ;
Graphics2D graph i c s = conta ine r . c r eateGraph ic s () ;

83 graph i c s . drawRenderedImage (containerImage , n u l l) ;
g raph i c s . d i spo s e () ;

85 } catch (Exception ex) {
System . out . p r i n t l n (”Ex1 : ” + ex . getMessage ()) ;

87 }

89 // Container f i l e as bytes
byte [] hiddenBytes = U t i l s . bufferedImageToBytes (conta ine r) ;

91

// Get message l ength
93 i n t l ength = 0 ;

i n t o f f s e t = 32 ;
95 f o r (i n t i = 0 ; i < 32 ; i++) {

l ength = (length << 1) | (hiddenBytes [i] & 1) ;
97 }

99 // Create array f o r conta in ing message
byte [] message = new byte [l ength] ;

101

// I t e r a t e bytes o f message
103 f o r (i n t i = 0 ; i < l ength ; ++i) {

// I t e r a t e each b i t o f byte
105 f o r (i n t j = 0 ; j <8; ++j , ++o f f s e t) {

message [i] = (byte) ((message [i] << 1) | (hiddenBytes [o f f s e t] & 1)) ;
107 }

}
109

t ry {
111 i f (! password . isEmpty ()) {

message = AES. decrypt (message , password) ;
113 }

FileOutputStream f o s = new FileOutputStream (outputF i l e) ;
115 f o s . wr i t e (message , 0 , message . l ength) ;

f o s . c l o s e () ;
117 } catch (Exception ex) {

System . out . p r i n t (”An e r r o r occurred attempting to decode your message .
I n v a l i d password ?”) ;

119 }

36

121 }

123 pub l i c s t a t i c S t r ing i n s p e c t (S t r ing c o n t a i n e r F i l e) {
r e turn U t i l s . humanReadableSize (in spec tByte s (c o n t a i n e r F i l e)) ;

125 }

127 pub l i c s t a t i c long inspec tByte s (S t r ing c o n t a i n e r F i l e) {
t ry {

129

BufferedImage conta ine r = n u l l ;
131 BufferedImage containerImage = ImageIO . read (new F i l e (c o n t a i n e r F i l e)) ;

c on ta ine r = new BufferedImage (conta inerImage . getWidth () , conta inerImage
. getHeight () , BufferedImage .TYPE 3BYTE BGR) ;

133 Graphics2D graph i c s = conta ine r . c r eateGraph ic s () ;
g raph i c s . drawRenderedImage (containerImage , n u l l) ;

135 graph i c s . d i spo s e () ;

137 // Container f i l e as bytes
byte [] conta inerBytes = U t i l s . bufferedImageToBytes (conta ine r) ;

139 i n t byteCapacity = (conta inerBytes . l ength − 4) / 8 ;

141 r e turn byteCapacity ;

143 } catch (Exception ex) {
ex . pr intStackTrace () ;

145 r e turn 0 ;
}

147 }

149 }

Listing A.3: Java version of the audio steganography tool

37

Appendix B

Steganography System

B.1 Java System

The figures in this section show the level of functionality implemented in the GUI of the original
Java application. These screenshots are not comprehensive of the full level of functionality of the
system – some functions were not accessible via the GUI (see section 4.2.1 for further details).

Figure B.1: Main interface

From the main interface, the following dialogs are accessible:

38

Figure B.2: Audio steganography tool - encoding
mode

Figure B.3: Audio steganography tool - decoding
mode

Figure B.4: Image steganography tool - encoding
mode

Figure B.5: Image steganography tool - decoding
mode

Figure B.6: Steganalysais screen showing when analysing an image without
data embedded. The textbox contains the LSB string.

39

Figure B.7: Steganalysais screen showing when analysing an image with
data embedded. The textbox contains the LSB string.

B.2 Makefile

Make is a utility that automatically compiles source code by reading a makefile. The makefile
contains a set of rules that will derive the target program upon execution.

Code listing B.1 shows our solution for compiling several C files to work with the FFmpeg API.
This code listing will work under the following prerequisites:

1. You are using Linux (preferably Ubuntu 12.10 LTS)

2. You have followed the FFmpeg compile guide for Ubuntu:
http://ffmpeg.org/trac/ffmpeg/wiki/UbuntuCompilationGuide

1 CC = gcc
OBJECTS = gene ra l . o p laye r . o t ranscode r . o

3 MAIN OBJECTS = main . o ${OBJECTS}
INCLUDES = $ (s h e l l pkg−c o n f i g −−c f l a g s l ibav fo rmat l i bavcodec l i b a v f i l t e r

l i b s w s c a l e l i b a v u t i l s d l)
5 CFLAGS = −Wall −ggdb

LDFLAGS = $ (s h e l l pkg−c o n f i g −− l i b s l ibav fo rmat l i bavcodec l i b a v f i l t e r l i b s w s c a l e
l i b a v u t i l s d l) −lm

7 EXE = steganosaurus . out

9 #
$< i s the f i r s t dependency in the dependency l i s t

11 # $@ i s the t a r g e t name
#

13 a l l : $ (EXE)

15 $ (EXE) : $ (MAIN OBJECTS)
$ (CC) $ (CFLAGS) $ (OBJECTS) $< $ (LDFLAGS) −o $@

17

%.o : %.c
19 $ (CC) $ (CFLAGS) $< $ (INCLUDES) −c −o $@

40

http://ffmpeg.org/trac/ffmpeg/wiki/UbuntuCompilationGuide

21 c l ean :
rm −f ∗ . o

23 rm −f $ (EXE)

Listing B.1: FFmpeg makefile

41

Appendix C

steganosaur.us

Steganosaurus is the nickanme given to this project. From the offset a website (http://www.
steganosaur.us was setup to document the research and developments of this project. Through
the blog we recorded all progress, set backs, discoveries and additional details as frequently as
possible.

Figure C.1: steganosaur.us - Homepage

The Tools section of our website allows visitors to use some of the steganography and crypto-
graphy tools that we produced during the preliminary research phase of this project.

42

http://www.steganosaur.us
http://www.steganosaur.us

Figure C.2: Steganosaur.us - Tools section

Figure C.3: Steganosaur.us - Audio steganography tool

Figure C.4: Steganosaur.us - Image steganography tool

Figure C.5: Steganosaur.us - Cryptography tool

43

	Signed Declaration
	Abstract
	Preface
	List of Figures
	List of Tables
	List of Code Listings
	Introduction
	The History of Steganography
	First Evidence of Steganography
	Linguistic Steganography

	Modern Steganography
	Prisoners' Problem
	Steganography, Security and Cryptography
	Watermarking

	Steganalysis
	Passive Warden
	Active Warden
	Malicious Warden

	Structure of this Report

	Literature Survey
	Fundamentals and Background
	Injection Techniques
	Substitution/Insertion Techniques
	Generation Techniques
	Transform Domain Techniques

	Video Steganography
	Transform-Domain
	Motion Vector
	Streaming and Real Time

	Steganalysis
	Overview of Steganalysis Techniques
	Video Steganalysis

	Summary

	Requirements and Analysis
	Project Overview
	Container File
	Security

	Steganography System
	Encryption and Decryption
	Embedding Algorithm
	Extraction Algorithm

	Evaluation
	Steganalysis
	Iteration

	Functional Requirements
	Steganography Requirements
	Steganalysis Requirements

	Non-functional Requirements
	Summary

	Progress
	Preliminary Research
	Audio Tool
	Image Tool
	Steganalysis Tool

	Video Manipulation
	Original Java System
	C System

	Summary

	Conclusion and Project Plan
	Project Plan

	Bibliography
	Fundamental Steganography Techniques
	Audio Steganography
	WAV File Format
	Source Code

	Image Steganography

	Steganography System
	Java System
	Makefile

	steganosaur.us

